电感有啥用越大越好还是越小越好 怎么配置

电机越小,绕的线径可以越细,直流电阻越大,但是电感量不与线径有关,而与圈数有关,只改变线径,圈数不变,电感量不变,感抗也就不变,对交流电的阻碍作用也不变,但因为线径变细,消耗在电机线上的无用功就增加,所以有用功变小;电机越大,绕的线径可以越粗,直流电阻越小,电感量和感抗不变。

电感器(英语:Inductor,又称:扼流器、电抗器)是一种电路元件,会因为通过的电流的改变而产生电动势,从而抵抗电流的改变。

最原始的电感器是1831年英国法拉第发现电磁感应现象的铁芯线圈。

电感器的结构类似于变压器,但只有一个绕组,一般由骨架、绕组、屏蔽罩、封装材料、磁心或铁心等组成。

如果电感器在没有电流通过的状态下,电路接通时它将试图阻碍电流流过它;如果电感器在有电流通过的状态下,电路断开时它将试图维持电流不变。

关于显卡dvi接口的电磁屏蔽罩,这个重要吗

信号线越长,这个电磁干扰罩越重要。

越是干扰大的场所,越是需要屏蔽罩。

普通家庭使用,即使没有这个金属壳,问题也没有多大影响。

电磁兼容设计的液晶电视电磁兼容设计

电磁干扰一般都分为两种,传导干扰和辐射干扰。

传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。

辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络。

液晶电视结构主要包括:液晶显示模块,电源模块,驱动模块(主要包括主驱动板和调谐器板)以及按键模块。

一般液晶显示模块由生产厂商在生产前已经完成EMC的测试。

这里主要介绍一下设计电源模块、驱动模块、按键模块,以及整机设计时应注意的电磁干扰问题。

电源部分两大主要功能就是实现驱动液晶屏的背光以及为其他模块(包括驱动模块,按键模块)提供直流电源。

电源模块的设计好坏直接影响到整个系统,如果设计不好,将会导致电视出现大的水波纹,严重时将会导致电视不能使用。

同时还会严重影响到附近的其他设备的正常使用。

液晶电视的电源部分采用的都是开关电源。

开关电源引起电磁干扰问题的原因是很复杂的。

设计开关电源时,要防止开关电源对电网和附近的电子设备产生干扰;还要加强开关电源本身对电磁干扰环境的适应能力。

针对开关电源的EMC问题,在设计时应采用以下主要措施:软开关技术:开关器件开通/关断时会产生浪涌电流和尖峰电压,这是开关管产生电磁干扰及开关损耗的主要原因。

软开关技术是减小开关器件损耗和改善开关器件EMC特性的重要方法。

该技术主要是使开关电源中的开关管在零电压、零电流时进行开关转换从而有效地抑制电磁干扰。

调制频率控制:电磁干扰是根据开关频率变化的,干扰的能量集中在离散的开关频率点上导致干扰强度大。

通过将开关信号的能量调制分布在一个很宽的频带上,产生一系列离散边频带,这样就将干扰频谱展开,干扰能量分布在离散频带上,从而降低开关频率点上的电磁干扰强度。

元器件布局与走线:将电源输入信号和输出信号相关联的元器件都放置在相应的端口附近,以避免因耦合路径而产生干扰。

将相互关联的元器件放在一起,避免走线过长带来干扰。

另外还要尽量避免信号线平行走线。

如果无法避免,尽量加大线间距。

或者在中间加一根地线,以减少相互之间的干扰。

液晶电视的主驱动板主要包括:模拟信号部分,高速数字电路部分,噪声源DC-DC电源部分。

元器件布局与走线:在布局上,要把模拟信号部分,高速数字电路部分,噪声源DC-DC电源部分这三部分合理地分开,使相互间的信号耦合为最小。

而在器件布设方面,还是遵从相互有关的器件尽量靠近的原则,这样可以获得较好的抗噪声效果。

DC-DC电源部分与地:在印刷电路板上,电源线和地线最重要。

让模拟电路和数字电路分别拥有自己的电源和地线通路。

克服电磁干扰,最主要的手段就是接地。

在液晶电视的驱动板上,主要将电源部分(DC-DC)的地和其他如解码和主芯片处理的部分的地分开,以减少电源地对图像显示和电视伴音的干扰。

如果在设计电路时存在着模拟地和数字地,在印制板铺地时应该将它们分开。

以减低相互干扰。

在使用双层板以及多层板PCB的布局中,一般都会将其中一层铜箔作为专门的接地平面。

这样做的目的是该接地充当屏蔽层。

集成芯片:在同一集成芯片中,也将模拟地和数字地分开铺地。

如液晶电视的主驱动板经常会使用的AD公司的模数转换芯片AD9883,在印制板设计时我们就可以将该芯片模拟部分的地和数字部分的地分开铺地。

最后再通过一根比较短的导线将两地单点连接起来。

或者是将两地通过一个1nF的旁路电容连接起来。

晶振:数字电路中的时钟电路是目前电子产品中主要的电磁干扰源之一,是EMC设计的主要内容。

晶振是一个强辐射发射源。

晶振内部电路产生大的RF电流,以至于晶体的地引线不能以很少的损耗充分地将比较大的Ldi/dt电流引到地平面,结果金属外壳变成了单极天线。

晶振的周边就是一个辐射场。

故晶振电路尽量远离接口电路,如串口、地址线、数据线等。

以避免接口电路将晶振的谐波信号带出印制板以造成电磁干扰。

晶振的两个脚都要加RC滤波电路。

同时一定要将晶振的金属外壳与印制板上的地连接起来。

另外,晶振与芯片引脚尽量靠近,用地线把时钟区隔离起来,放置一个局部地平面并且通过多个过孔与地线连接。

电容去耦:利用电容去耦来降低电磁干扰,电容去耦可以分为三种:整体的、局部的和板间的。

整体去耦电容工作在低频状态,为整个电路板提供一个稳定的电压和电流。

它应放置在紧靠印制电路板电源线和地线的地方。

典型的去耦电容值是0.1μF。

这个电容的分布电感的典型值是5μH。

0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对几十MHz以上的噪声几乎不起作用。

所以对于20MHz以上的噪声,采用0.01μF的电容去耦。

局部去耦电容使集成电路得到的供电电压比较平稳;另外还旁路掉该器件的高频噪声。

板间去耦电容是指电源面和接地面之间的电容,主要解决电源中产生的高频瞬变电流。

电源输入端跨接一个10~100uF的电解电容器,如果印制电路板的位置允许,采用100uF以上的电解电容器的抗干扰效果会更好。

去耦电容的引线不能过长,一般都紧靠在集成电路电源旁边,连线要粗一些。

磁珠滤波:在主板上的所有信号输入端(如YPBPR接口、VGA接口)都要加入磁珠滤波。

磁珠专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。

它扮演高频电阻的角色,即将高频衰减掉。

该器件允许直流信号通过,而滤除交流信号。

选择磁珠时,必须注意以下几个因素:1、不需要的信号频率范围为多少;2、噪声源是谁;3、需要多大的噪声衰减;4、环境条件是什么(温度,直流电压,结构强度);5、电路和负载阻抗是多少;6、是否有空间在PCB板上放置磁珠。

前三条通过观察厂家提供的阻抗频率曲线就可以判断。

在阻抗曲线中三条曲线都非常重要,即电阻R,感抗X和总感抗Z。

如图1所示:图1:反映磁珠电阻、感抗和总感抗的阻抗曲线及等效电路拓扑总阻抗通过下面的公式⑴来描述:Z=(R + 2πFL)通过这一曲线,选择在期望衰减噪声的频率范围内具有最大阻抗而在低频和直流下信号衰减尽量小的磁珠。

片式磁珠在过大的直流电压下,阻抗特性会受到影响,另外,如果工作温升过高,或者外部磁场过大,磁珠的阻抗都会受到不利的影响。

使用片式磁珠还是片式电感主要还在于应用。

在谐振电路中需要使用片式电感。

而需要消除不需要的电磁干扰噪声时,使用片式磁珠是最佳的选择。

调谐器板主要包括:调谐器部分、音频处理部分。

在进行调谐器板部分的电路设计和PCB板布板时,尤其要注意电磁干扰的问题,必须考虑下面几点:1. 首先要将TUNER部分的地(即模拟地)与其他部分的地分开铺地。

2. 一定要将TUNER的金属外壳与地连接起来,连接点多一些能更好地消除电磁干扰。

调谐器TUNER内部本来就存在高频电路,故要做好屏蔽工作。

3. 在选用接口端子(如AV端子、S-VIDEO端子等)时,尽量选用传导性好、抗电磁干扰性强的端子,同时也需要将接口端子的所用地与大地完整连接起来。

同时也加磁珠滤波。

4. 信号线尽量短而直,如果无法避免,可采取飞线过渡。

信号线切忌形成环形。

因为环形相当于线圈的匝数,环形布线的辐射效应最强。

5. 尽量减少大面积的死铜,解决办法是可以将它们与地连接在一起。

如有大面积的死铜形成天线,则会引入电磁干扰。

6. 石英晶体下面以及对噪声敏感的器件下面不要走线。

音频处理部分要特别注意在印制板的走线布局中,首先应避免将高速信号线和音、视频线走在一起。

例如:如果将I2C总线中的时钟线SCL和数据线SDA的走线和音频线的走线靠得很近。

由于I2C总线中的时钟线SCL和数据线SDA在不停地变化,从而干扰到声音。

很明显地如,在你使用电视遥控器转换电视频道时,如果能听到扬声器发出有规律的“咯哒、咯哒”声。

这可能就是因为在印制板布板时忽视了上面的问题。

整机机内的装配图(以其中的一种型号为例)如图2所示:图2:反映各个EMI关注点的某型号整机机内装配图 在上图中标号为5的连接线为数字板连接屏的屏线。

由于屏线主要是上屏的数据等。

会对系统造成很大的干扰。

减小干扰最好办法是使用双绞线和屏蔽线。

如果是TTL屏,屏线需要在连接线的外面加屏蔽网罩或者是磁环。

如果LVDS屏,则需要使用双绞线,同时再加上磁环。

以减少屏线对整个系统的电磁干扰。

带屏蔽的双绞线,可以信号电流在两根内导线上流动,噪声电流在屏蔽层里流动,因此消除了公共阻抗的耦合,而任何干扰将同时感应到两根导线上,使噪声相消。

在电源和主控制板之间的连线(标号为4)上也需要加一个磁环。

主要是因为电源线对主板会产生比较大的电磁干扰。

在按键板跟主板的连接线(标号为9)上也应该加上一个磁环。

主要原因是按键板上不断有数据变换(遥控接收头)而导致对系统产生电磁干扰。

加磁环可以有效地屏蔽电磁干扰。

在跟扬声器连接的音频线(标号为10)上加上磁环,以减少音频输出对系统的电磁干扰。

如果主板和调谐器板之间有排线(标号6、7、8)连接,则需要在连接线上加磁环。

以减少排线间的电磁干扰。

以上所加的磁环可以根据具体的情况来加,可以通过反复的实验来确定。

屏蔽罩的利用:通常,液晶显示模块、主控制板(包括数字板和调谐器板)和电源部分都需要屏蔽罩。

主芯片的主频率是产生电磁干扰的主要原因。

主频率的频率谐波,最容易产生电磁干扰。

在做EMC的实验中,主频率的频率谐波的地方电磁干扰都很大。

在设计时要对主芯片加一定的屏蔽措施。

主要的屏蔽措施在数字板上加金属屏蔽罩。

加屏蔽罩是最有效的抗电磁干扰的途径。

但是因为要考虑到驱动板和整个系统的散热问题,要求屏蔽罩上开孔散热。

但是其最大尺寸必须小于噪声最短波长的1/100。

调谐器板上的屏蔽主要是对TUNER部分的屏蔽。

电源部分的屏蔽尤其重要,如果电源部分的屏蔽不好,则会造成大的干扰。

这样传导就过不了。

并且由于电源的发热很厉害,所以该屏蔽罩一定要注意到散热的问题。

通常屏蔽罩上都有开口和接缝,他们会造成电磁泄露。

从而使屏蔽效果不佳。

解决接缝处电磁泄露的方法是在接缝处使用电磁密封衬垫。

屏蔽罩上开口的电磁泄露与该开口的尺寸、辐射源的特性和辐射源到开口的距离有关。

通过设计开口尺寸和辐射源到开口的距离来满足屏蔽的要求。

请问买一块铝6061放在笔记本充电器下面或手机下面散热可以吗
暂无