LED封装技术的结构类型

自上世纪九十年代以来,LED芯片及材料制作技术的研发取得多项突破,透明衬底梯形结构、纹理表面结构、芯片倒装结构,商品化的超高亮度(1cd以上)红、橙、黄、绿、蓝的LED产品相继问市,如表1所示,2000年开始在低、中光通量的特殊照明中获得应用。

LED的上、中游产业受到前所未有的重视,进一步推动下游的封装技术及产业发展,采用不同封装结构形式与尺寸,不同发光颜色的管芯及其双色、或三色组合方式,可生产出多种系列,品种、规格的产品。

LED产品封装结构的类型如表2所示,也有根据发光颜色、芯片材料、发光亮度、尺寸大小等情况特征来分类的。

单个管芯一般构成点光源,多个管芯组装一般可构成面光源和线光源,作信息、状态指示及显示用,发光显示器也是用多个管芯,通过管芯的适当连接(包括串联和并联)与合适的光学结构组合而成的,构成发光显示器的发光段和发光点。

表面贴装LED可逐渐替代引脚式LED,应用设计更灵活,已在LED显示市场中占有一定的份额,有加速发展趋势。

固体照明光源有部分产品上市,成为今后LED的中、长期发展方向。

LED脚式封装采用引线架作各种封装外型的引脚,是最先研发成功投放市场的封装结构,品种数量繁多,技术成熟度较高,封装内结构与反射层仍在不断改进。

标准LED被大多数客户认为是目前显示行业中最方便、最经济的解决方案,典型的传统LED安置在能承受0.1W输入功率的包封内,其90%的热量是由负极的引脚架散发至PCB板,再散发到空气中,如何降低工作时pn结的温升是封装与应用必须考虑的。

包封材料多采用高温固化环氧树脂,其光性能优良,工艺适应性好,产品可性高,可做成有色透明或无色透明和有色散射或无色散射的透镜封装,不同的透镜形状构成多种外形及尺寸,例如,圆形按直径分为Φ2mm、Φ3mm、Φ4.4mm、Φ5mm、Φ7mm等数种,环氧树脂的不同组份可产生不同的发光效果。

花色点光源有多种不同的封装结构:陶瓷底座环氧树脂封装具有较好的工作温度性能,引脚可弯曲成所需形状,体积小;金属底座塑料反射罩式封装是一种节能指示灯,适作电源指示用;闪烁式将CMOS振荡电路芯片与LED管芯组合封装,可自行产生较强视觉冲击的闪烁光;双色型由两种不同发光颜色的管芯组成,封装在同一环氧树脂透镜中,除双色外还可获得第三种的混合色,在大屏幕显示系统中的应用极为广泛,并可封装组成双色显示器件;电压型将恒流源芯片与LED管芯组合封装,可直接替代5—24V的各种电压指示灯。

面光源是多个LED管芯粘结在微型PCB板的规定位置上,采用塑料反射框罩并灌封环氧树脂而形成,PCB板的不同设计确定外引线排列和连接方式,有双列直插与单列直插等结构形式。

点、面光源现已开发出数百种封装外形及尺寸,供市场及客户适用。

LED发光显示器可由数码管或米字管、符号管、矩陈管组成各种多位产品,由实际需求设计成各种形状与结构。

以数码管为例,有反射罩式、单片集成式、单条七段式等三种封装 结构,连接方式有共阳极和共阴极两种,一位就是通常说的数码管,两位以上的一般称作显示器。

反射罩式具有字型大,用料省,组装灵活的混合封装特点,一般用白色塑料制作成带反射腔的七段形外壳,将单个LED管芯粘结在与反射罩的七个反射腔互相对位的PCB板上,每个反射腔底部的中心位置是管芯形成的发光区,用压焊方法键合引线,在反射罩内滴人环氧树脂,与粘好管芯的PCB板对位粘合,然后固化即成。

反射罩式又分为空封和实封两种,前者采用散射剂与染料的环氧树脂,多用于单位、双位器件;后者上盖滤色片与匀光膜,并在管芯与底板上涂透明绝缘胶,提高出光效率,一般用于四位以上的数字显示。

单片集成式是在发光材料晶片上制作大量七段数码显示器图形管芯,然后划片分割成单片图形管芯,粘结、压焊、封装带透镜(俗称鱼眼透镜)的外壳。

单条七段式将已制作好的大面积LED芯片,划割成内含一只或多只管芯的发光条,如此同样的七条粘结在数码字形的可伐架上,经压焊、环氧树脂封装构成。

单片式、单条式的特点是微小型化,可采用双列直插式封装,大多是专用产品。

LED光柱显示器在106mm长度的线路板上,安置101只管芯(最多可达201只管芯),属于高密度封装,利用光学的折射原理,使点光源通过透明罩壳的13-15条光栅成像,完成每只管芯由点到线的显示,封装技术较为复杂。

半导体pn结的电致发光机理决定LED不可能产生具有连续光谱的白光,同时单只LED也不可能产生两种以上的高亮度单色光,只能在封装时借助荧光物质,蓝或紫外LED管芯上涂敷荧光粉,间接产生宽带光谱,合成白光;或采用几种(两种或三种、多种)发不同色光的管芯封装在一个组件外壳内,通过色光的混合构成白光LED。

这两种方法都取得实用化,日本2000年生产白光LED达1亿只,发展成一类稳定地发白光的产品,并将多只白光LED设计组装成对光通量要求不高,以局部装饰作用为主,追求新潮的电光源。

在2002年,表面贴装封装的LED(SMDLED)逐渐被市场所接受,并获得一定的市场份额,从引脚式封装转向SMD符合整个电子行业发展大趋势,很多生产厂商推出此类产品。

早期的SMD LED大多采用带透明塑料体的SOT-23改进型,卷盘式容器编带包装。

在SOT-23基础上,前者为单色发光,后者为双色或三色发光。

近些年,SMD LED成为一个发展热点,很好地解决了亮度、视角、平整度、可性、一致性等问题,采用更轻的PCB板和反射层材料,在显示反射层需要填充的环氧树脂更少,并去除较重的碳钢材料引脚,通过缩小尺寸,降低重量,可轻易地将产品重量减轻一半,最终使应用更趋完美,尤其适合户内,半户外全彩显示屏应用。

表3示出常见的SMD LED的几种尺寸,以及根据尺寸(加上必要的间隙)计算出来的最佳观视距离。

焊盘是其散热的重要渠道,厂商提供的SMD LED的数据都是以4.0×4.0mm的焊盘为基础的,采用回流焊可设计成焊盘与引脚相等。

超高亮度LED产品可采用PLCC(塑封带引线片式载体)-2封装,通过独特方法装配高亮度管芯,产品热阻为400K/W,可按CECC方式焊接,其发光强度在50mA驱动电流下达1250mcd。

七段式的一位、两位、三位和四位数码SMD LED显示器件的字符高度为12.7mm,显示尺寸选择范围宽。

PLCC封装避免了引脚七段数码显示器所需的手工插入与引脚对齐工序,符合自动拾取—贴装设备的生产要求,应用设计空间灵活,显示鲜艳清晰。

多色PLCC封装带有一个外部反射器,可简便地与发光管或光导相结合,用反射型替代透射型光学设计,为大范围区域提供统一的照明,研发在3.5V、1A驱动条件下工作的功率型SMD LED封装。

LED芯片及封装向大功率方向发展,在大电流下产生比Φ5mmLED大10-20倍的光通量,必须采用有效的散热与不劣化的封装材料解决光衰问题,因此,管壳及封装也是其关键技术,能承受数W功率的LED封装已出现。

5W系列白、绿、蓝绿、蓝的功率型LED从2003年初开始供货,白光LED光输出达1871lm,光效44.31lm/W绿光衰问题,开发出可承受10W功率的LED,大面积管;匕尺寸为2.5×2.5mm,可在5A电流下工作,光输出达2001lm,作为固体照明光源有很大发展空间。

Luxeon系列功率LED是将A1GalnN功率型倒装管芯倒装焊接在具有焊料凸点的硅载体上,然后把完成倒装焊接的硅载体装入热沉与管壳中,键合引线进行封装。

这种封装对于取光效率,散热性能,加大工作电流密度的设计都是最佳的。

其主要特点:热阻低,一般仅为14℃/W,只有常规LED的1/10;可靠性高,封装内部填充稳定的柔性胶凝体,在-40-120℃范围,不会因温度骤变产生的内应力,使金丝与引线框架断开,并防止环氧树脂透镜变黄,引线框架也不会因氧化而玷污;反射杯和透镜的最佳设计使辐射图样可控和光学效率最高。

另外,其输出光功率,外量子效率等性能优异,将LED固体光源发展到一个新水平。

Norlux系列功率LED的封装结构为六角形铝板作底座(使其不导电)的多芯片组合,底座直径31.75mm,发光区位于其中心部位,直径约(0.375×25.4)mm,可容纳40只LED管芯,铝板同时作为热沉。

管芯的键合引线通过底座上制作的两个接触点与正、负极连接,根据所需输出光功率的大小来确定底座上排列管芯的数目,可组合封装的超高亮度的AlGaInN和AlGaInP管芯,其发射光分别为单色,彩色或合成的白色,最后用高折射率的材料按光学设计形状进行包封。

这种封装采用常规管芯高密度组合封装,取光效率高,热阻低,较好地保护管芯与键合引线,在大电流下有较高的光输出功率,也是一种有发展前景的LED固体光源。

在应用中,可将已封装产品组装在一个带有铝夹层的金属芯PCB板上,形成功率密度LED,PCB板作为器件电极连接的布线之用,铝芯夹层则可作热沉使用,获得较高的发光通量和光电转换效率。

此外,封装好的SMD LED体积很小,可灵活地组合起来,构成模块型、导光板型、聚光型、反射型等多姿多彩的照明光源。

功率型LED的热特性直接影响到LED的工作温度、发光效率、发光波长、使用寿命等,因此,对功率型LED芯片的封装设计、制造技术更显得尤为重要。

COB封装可将多颗芯片直接封装在金属基印刷电路板MCPCB,通过基板直接散热,不仅能减少支架的制造工艺及其成本,还具有减少热阻的散热优势。

从成本和应用角度来看,COB成为未来灯具化设计的主流方向。

COB封装的LED模块在底板上安装了多枚LED芯片,使用多枚芯片不仅能够提高亮度,还有助于实现LED芯片的合理配置,降低单个LED芯片的输入电流量以确保高效率。

而且这种面光源能在很大程度上扩大封装的散热面积,使热量更容易传导至外壳。

半导体照明灯具要进入通用照明领域,生产成本是第一大制约因素。

要降低半导体照明灯具的成本,必须首先考虑如何降低LED的封装成本。

传统的LED灯具做法是:LED光源分立器件→MCPCB光源模组→LED灯具,主要是基于没有适用的核心光源组件而采取的做法,不但耗工费时,而且成本较高。

实际上,如果走“COB光源模块→LED灯具”的路线,不但可以省工省时,而且可以节省器件封装的成本。

在成本上,与传统COB光源模块在照明应用中可以节省器件封装成本、光引擎模组制作成本和二次配光成本。

在相同功能的照明灯具系统中,总体可以降低30%左右的成本,这对于半导体照明的应用推广有着十分重大的意义。

在性能上,通过合理地设计和模造微透镜,COB光源模块可以有效地避免分立光源器件组合存在的点光、眩光等弊端,还可以通过加入适当的红色芯片组合,在不降低光源效率和寿命的前提下,有效地提高光源的显色性(已经可以做到90以上)。

在应用上,COB光源模块可以使照明灯具厂的安装生产更简单和方便。

在生产上,现有的工艺技术和设备完全可以支持高良品率的COB光源模块的大规模制造。

随着LED照明市场的拓展,灯具需求量在快速增长,我们完全可以根据不同灯具应用的需求,逐步形成系列COB光源模块主流产品,以便大规模生产。

一、工艺:1)清洗:采用超声波清洗PCB或LED支架,并烘干。

2)装架:在LED管芯底部电极备上银胶后进行扩张,将扩张后的管芯安置在刺晶台上,在显微镜下用刺晶笔将管芯一个一个安装在PCB或LED相应的焊盘上,随后进行烧结使银胶固化。

3)压焊:用铝丝或金丝焊机将电极连接到LED管芯上,以作电流注入的引线。

LED直接安装在PCB上的,一般采用铝丝焊机。

4)封装:通过点胶,用环氧将LED管芯和焊线保护起来。

在PCB板上点胶,对固化后胶体形状有严格要求,这直接关系到背光源成品的出光亮度。

这道工序还将承担点荧光粉的任务。

5)焊接:如果背光源是采用SMD-LED或其它已封装的LED,则在装配工艺之前,需要将LED焊接到PCB板上。

6)切膜:用冲床模切背光源所需的各种扩散膜、反光膜等。

7)装配:根据图纸要求,将背光源的各种材料手工安装正确的位置。

8)测试:检查背光源光电参数及出光均匀性是否良好。

9)包装:将成品按要求包装、入库。

二、封装工艺1、LED的封装的任务是将外引线连接到LED芯片的电极上,同时保护好LED芯片,并且起到提高光取出效率的作用。

关键工序有装架、压焊、封装。

2、LED封装形式LED封装形式可以说是五花八门,主要根据不同的应用场合采用相应的外形尺寸,散热对策和出光效果。

LED按封装形式分类有Lamp-LED、TOP-LED、Side-LED、SMD-LED、High-Power-LED等。

3、LED封装工艺流程三、封装工艺说明1、芯片检验镜检:材料表面是否有机械损伤及麻点麻坑芯片尺寸及电极大小是否符合工艺要求;电极图案是否完整2、扩片由于LED芯片在划片后依然排列紧密间距很小,不利于后工序的操作。

我们采用扩片机对黏结芯片的膜进行扩张,是LED芯片的间距拉伸到约0.6mm.也可以采用手工扩张,但很容易造成芯片掉落浪费等不良问题。

3、点胶在LED支架的相应位置点上银胶或绝缘胶。

工艺难点在于点胶量的控制,在胶体高度、点胶位置均有详细的工艺要求。

由于银胶和绝缘胶在贮存和使用均有严格的要求,银胶的醒料、搅拌、使用时间都是工艺上必须注意的事项。

4、备胶和点胶相反,备胶是用备胶机先把银胶涂在LED背面电极上,然后把背部带银胶的LED安装在LED支架上。

备胶的效率远高于点胶,但不是所有产品均适用备胶工艺。

5、手工刺片将扩张后LED芯片安置在刺片台的夹具上,LED支架放在夹具底下,在显微镜下用针将LED芯片一个一个刺到相应的位置上。

手工刺片和自动装架相比有一个好处,便于随时更换不同的芯片,适用于需要安装多种芯片的产品。

6、自动装架自动装架其实是结合了沾胶和安装芯片两大步骤,先在LED支架上点上银胶,然后用真空吸嘴将LED芯片吸起移动位置,再安置在相应的支架位置上。

自动装架在工艺上主要要熟悉设备操作编程,同时对设备的沾胶及安装精度进行调整。

在吸嘴的选用上尽量选用胶木吸嘴,防止对LED芯片表面的损伤,特别是兰、绿色芯片必须用胶木的。

因为钢嘴会划伤芯片表面的电流扩散层。

7、烧结烧结的目的是使银胶固化,烧结要求对温度进行监控,防止批次性不良。

银胶烧结的温度一般控制在150℃,烧结时间2小时。

根据实际情况可以调整到170℃,1小时。

绝缘胶一般150℃,1小时。

银胶烧结烘箱的必须按工艺要求隔2小时打开更换烧结的产品,中间不得随意打开。

烧结烘箱不得再其他用途,防止污染。

8、压焊压焊的目的将电极引到LED芯片上,完成产品内外引线的连接工作。

LED的压焊工艺有金丝球焊和铝丝压焊两种。

右图是铝丝压焊的过程,先在LED芯片电极上压上第一点,再将铝丝拉到相应的支架上方,压上第二点后扯断铝丝。

金丝球焊过程则在压第一点前先烧个球,其余过程类似。

压焊是LED封装技术中的关键环节,工艺上主要需要监控的是压焊金丝拱丝形状,焊点形状,拉力。

对压焊工艺的深入研究涉及到多方面的问题,如金丝材料、超声功率、压焊压力、劈刀选用、劈刀运动轨迹等等。

9、点胶封装LED的封装主要有点胶、灌封、模压三种。

基本上工艺控制的难点是气泡、多缺料、黑点。

设计上主要是对材料的选型,选用结合良好的环氧和支架。

一般情况下TOP-LED和Side-LED适用点胶封装。

手动点胶封装对操作水平要求很高,主要难点是对点胶量的控制,因为环氧在使用过程中会变稠。

白光LED的点胶还存在荧光粉沉淀导致出光色差的问题。

10、灌胶封装Lamp-LED的封装采用灌封的形式。

灌封的过程是先在LED成型模腔内注入液态环氧,然后插入压焊好的LED支架,放入烘箱让环氧固化后,将LED从模腔中脱出即成型。

11、模压封装将压焊好的LED支架放入模具中,将上下两副模具用液压机合模并抽真空,将固态环氧放入注胶道的入口加热用液压顶杆压入模具胶道中,环氧顺着胶道进入各个LED成型槽中并固化。

12、固化与后固化固化是指封装环氧的固化,一般环氧固化条件在135℃,1小时。

模压封装一般在150℃,4分钟。

13、后固化后固化是为了让环氧充分固化,同时对LED进行热老化。

后固化对于提高环氧与支架的粘接强度非常重要。

一般条件为120℃,4小时。

14、切筋和划片由于LED在生产中是连在一起的,Lamp封装LED采用切筋切断LED支架的连筋。

SMD-LED则是在一片PCB板上,需要划片机来完成分离工作。

15、测试测试LED的光电参数、检验外形尺寸,同时根据客户要求对LED产品进行分选。

16、包装将成品进行计数包装。

超高亮LED需要防静电包装。

钣金加工的流程是什么?

一、材料的选用钣金加工一般用到的材料有冷轧板(SPCC)、热轧板(SHCC)、镀锌板(SECC、SGCC),铜(CU)黄铜、紫铜、铍铜,铝板(6061、5052、1010、1060、6063、硬铝等),不锈钢(镜面、拉丝面、雾面),根据产品作用不同,选用材料不同,一般需从产品其用途及成本上来考虑。

1、冷轧板SPCC,主要用电镀和烤漆件,成本低,易成型,材料厚度≤3.2mm。

2、热轧板SHCC,材料T≥3.0mm,也是用电镀,烤漆件,成本低,但难成型,主要用平板件。

3、镀锌板SECC、SGCC。

SECC电解板分N料、P料,N料主要不作表面处理,成本高,P料用于喷涂件。

4、铜;主要用导电作用料件,其表面处理是镀镍、镀铬,或不作处理,成本高。

5、铝板;一般用表面铬酸盐(J11-A),氧化(导电氧化,化学氧化),成本高,有镀银,镀镍。

6、铝型材;截面结构复杂的料件,大量用于各种插箱中。

表面处理同铝板。

7、不锈钢;主要用不作任何表面处理,成本高。

二、图面审核要编写零件的工艺流程,首先要知道零件图的各种技术要求;则图面审核是对零件工艺流程编写的最重要环节。

1、检查图面是否齐全。

2、图面视图关系,标注是否清楚,齐全,标注尺寸单位。

3、装配关系,装配要求重点尺寸。

4、新旧版图面区别。

5、外文图的翻译。

6、表处代号转换。

7、图面问题反馈与处埋。

8、材料9、品质要求与工艺要求10、正式发行图面,须加盖品质控制章。

三、注意事项展开图是依据零件图(3D)展开的平面图(2D)1、展开方式要合,要便利节省材料及加工性2、合理选择间隙及包边方式,T=2.0以下间隙0.2,T=2-3间隙0.5,包边方式采用长边包短边(门板类)3、合理考虑公差外形尺寸:负差走到底,正差走一半;孔形尺寸:正差走到底,负差走一半。

4、毛刺方向5、抽牙、压铆、撕裂、冲凸点(包),等位置方向,画出剖视图6、核对材质,板厚,以板厚公差7、特殊角度,折弯角内半径(一般R=0.5)要试折而定展开8、有易出错(相似不对称)的地方应重点提示9、尺寸较多的地方要加放大图10、需喷涂保护地方须表示。

四、加工流程根据钣金件结构的差异,工艺流程可各不相同,但总的不超过以下几点。

1、下料:下料方式有各种,主要有以下几种方式①、剪床:是利用剪床剪切条料简单料件,它主要是为模具落料成形准备加工,成本低,精度低于0.2,但只能加工无孔无切角的条料或块料。

②、冲床:是利用冲床分一步或多步在板材上将零件展开后的平板件冲裁成形各种形状料件,其优点是耗费工时短,效率高,精度高,成本低,适用大批量生产,但要设计模具。

③、NC数控下料,NC下料时首先要编写数控加工程式,利用编程软件,将绘制的展开图编写成NC数拉加工机床可识别的程式,让其根据这些程式一步一刀在平板上冲裁各构形状平板件,但其结构受刀具结构所至,成本低,精度于0.15。

④、镭射下料,是利用激光切割方式,在大平板上将其平板的结构形状切割出来,同NC下料一样需编写镭射程式,它可下各种复杂形状的平板件,成本高,精度于0.1。

⑤、锯床:主要用下铝型材、方管、圆管、圆棒料之类,成本低,精度低。

1、钳工:沉孔、攻丝、扩孔、钻孔沉孔角度一般120℃,用于拉铆钉,90℃用于沉头螺钉,攻丝英制底孔。

2、翻边:又叫抽孔、翻孔,就是在一个较小的基孔上抽成一个稍大的孔,再攻丝,主要用板厚比较薄的钣金加工,增加其强度和螺纹圈数,避免滑牙,一般用于板厚比较薄,其孔周正常的浅翻边,厚度基本没有变化,允许有厚度的变薄30-40%时,可得到比正常翻边高度大高40-60%的高度,用挤薄50%时,可得最大的翻边高度,当板厚较大时,如2.0、2.5等以上的板厚,便可直接攻丝。

3、冲床:是利用模具成形的加工工序,一般冲床加工的有冲孔、切角、落料、冲凸包(凸点),冲撕裂、抽孔、成形等加工方式,其加工需要有相应的模具来完成操作,如冲孔落料模、凸包模、撕裂模、抽孔模、成型模等,操作主要注意位置,方向性。

4、压铆:压铆就本公司而言,主要有压铆螺母、螺钉、松不脱等,其是通过液压压铆机或冲床来完成操作,将其铆接到钣金件上,还有涨铆方式,需注意方向性。

5、折弯;折弯就是将2D的平板件,折成3D的零件。

其加工需要有折床及相应折弯模具完成,它也有一定折弯顺序,其原则是对下一刀不产生干涉的先折,会产生干涉的后折。

l折弯条数是T=3.0mm以下6倍板厚计算槽宽,如:T=1.0、V=6.0F=1.8、T=1.2、V=8、F=2.2、T=1.5、V=10、F=2.7、T=2.0、V=12、F=4.0l折床模具分类,直刀、弯刀(80℃、30℃)l铝板折弯时,有裂纹,可增加下模槽宽式增加上模R(退火可避免裂纹)l折弯时注意事项:Ⅰ图面,要求板材厚度,数量;Ⅱ折弯方向Ⅲ折弯角度;Ⅳ折弯尺寸;Ⅵ外观、电镀铬化料件不许有折痕。

折弯与压铆工序关系,一般情况下先压铆后折弯,但有料件压铆后会干涉就要先折后压,又有些需折弯—压铆—再折弯等工序。

6、焊接:焊接定义:被焊材料原子与分子距京达晶格距离形成一体①分类:a、熔化焊:氩弧焊、CO2焊、气体焊、手工焊b、压力焊:点焊、对焊、撞焊c、钎焊:电铬焊、铜丝②焊接方式:a、CO2气体保护焊b、氩弧焊c、点焊接等d、机器人焊焊接方式的选用是根据实际要求和材质而定,一般来说CO2气体保护焊用于铁板类焊搠;氩弧焊用于不锈钢、铝板类焊接上,机器人焊接,可节省工时,提高工作效率和焊接质量,减轻工作强度。

③焊接符号:Δ角焊,Д、I型焊,V型焊接,单边V型焊接(V)带钝边V型焊接(V),点焊(O),塞焊或槽焊(∏),卷边焊(χ),带钝边单边V型焊(V),带钝之U型焊,带钝的J型焊,封底焊,逢焊④箭头线和接头⑤焊接缺失及其预防措失点焊:强度不够可打凸点,强加焊接面积CO2焊:生产率高,能源消耗少,成本低,抗锈能力强氩弧焊:溶深浅,溶接速度慢,效率低,生产成本高,具有夹钨缺陷,但具有焊接质量较好的优点,可焊接有色金属,如铝、铜、镁等。

⑥焊接变形原因:焊接前准备不足,需增加夹具焊接治具不良改善工艺焊接顺序不好⑦焊接变形效正法:火焰效正法振动法锤击法人工时效法

钣金加工的工艺流程步骤是什么?

钣金加工工艺流程:材料的选用:钣金加工一般用到的材料有冷轧板(SPCC)、热轧板(SHCC)、镀锌板(SECC、SGCC),铜(CU)黄铜、紫铜、铍铜,铝板(6061、6063、硬铝等),铝型材,不锈钢(镜面、拉丝面、雾面),根据产品作用不同,选用材料不同,一般需从产品其用途及成本上来考虑。

1、冷轧板SPCC,主要用电镀和烤漆件,成本低,易成型,材料厚度≤3.2mm。

2、热轧板SHCC,材料T≥3.0mm,也是用电镀,烤漆件,成本低,但难成型,主要用平板件。

3、镀锌板SECC、SGCC。

SECC电解板分N料、P料,N料主要不作表面处理,成本高,P料用于喷涂件。

4、铜;主要用导电作用料件,其表面处理是镀镍、镀铬,或不作处理,成本高。

5、铝板;一般用表面铬酸盐(J11-A),氧化(导电氧化,化学氧化),成本高,有镀银,镀镍。

6、铝型材;截面结构复杂的料件,大量用于各种插箱中。

表面处理同铝板。

7、不锈钢;主要用不作任何表面处理,成本高。

图面审核:要编写零件的工艺流程,首先要知道零件图的各种技术要求;则图面审核是对零件工艺流程编写的最重要环节。

1、检查图面是否齐全。

2、图面视图关系,标注是否清楚,齐全,标注尺寸单位。

3、装配关系,装配要求重点尺寸。

4、新旧版图面区别。

5、外文图的翻译。

6、表处代号转换。

7、图面问题反馈与处埋。

8、材料。

9、品质要求与工艺要求。

10、正式发行图面,须加盖品质控制章。

钣金加工注意事项:展开图是依据零件图(3D)展开的平面图(2D):1、展开方式要合,要便利节省材料及加工性。

2、合理选择问隙及包边方式,T=2.0以下问隙0.2,T=2-3问隙0.5,包边方式采用长边包短边(门板类)。

3、合理考虑公差外形尺寸:负差走到底,正差走一半;孔形尺寸:正差走到底,负差走一半。

4、毛刺方向。

5、抽牙、压铆、撕裂、冲凸点(包),等位置方向,画出剖视图。

6、核对材质,板厚,以板厚公差。

7、特殊角度,折弯角内半径(一般R=0.5)要试折而定展开。

8、有易出错(相似不对称)的地方应重点提示。

9、尺寸较多的地方要加放大图。

10、需喷涂保护地方须表示。

钣金加工是钣金技术人员需要掌握的关键技术,也是钣金制品成形的重要工序。

它既包括传统的切割下料、冲裁加工、弯压成形等方法及工艺参数,又包括各种冷冲压模具结构及工艺参数、各种设备工作原理及操作方法,还包括新冲压技术及新工艺。

金属板材加工就叫钣金加工。

具体譬如利用板材制作烟囱、铁桶、油箱油壶、通风管道、弯头大小头、天圆地方、漏斗形等,主要工序是剪切、折弯扣边、弯曲成型、焊接、铆接等,需要一定几何知识。

钣金件就是薄板五金件,也就是可以通过冲压,弯曲,拉伸等手段来加工的零件,一个大体的定义就是在加工过程中厚度不变的零件。

钣金设备:相对应的是铸造件,锻压件,机械加工零件等通常指金属的切削加工,即用切削工具从金属材料(毛坯)或工件上切除多余的金属层,从而使工件获得具有一定形状、尺寸精度和表面粗糙度的加工方法。

如车削、钻削、铣削、刨削、磨削、拉削等。

在金属工艺学中,与热加工相对应,冷加工则指在低于再结晶温度下使金属产生塑性变形的加工工艺,如冷轧、冷拔、冷锻、冲压、冷挤压等。

冷加工变形抗力大,在使金属成形的同时,可以利用加工硬化提高工件的硬度和强度,但会使塑性降低。

冷加工适于加工截面尺寸小,加工尺寸和表面粗糙度要求较高的金属零件。

空调散热片多少钱一块
联想Y430系列的笔记本电脑适用那种散热器啊