密码 三登Science!复旦团队破解人类卵子

全球不孕不育率持续上升

如今已接近15%-20%

成为仅次于癌症、心脑血管疾病的

人类第三大健康问题

从细胞生物学与遗传学角度出发

复旦大学生物医学研究院

王磊、桑庆、武田宇团队

研究成果揭示了

人类卵母细胞纺锤体双极化机制

为生殖障碍疾病的研究与治疗

提供了重要的解释视角与理论支持

成果以“Mechanisms of minor pole-mediated spindle bipolarization in human oocytes”为题

发表在最新一期的《科学》杂志(Science)

破解人卵母细胞成熟障碍之谜

初步发现人卵纺锤体具有独特性

据估计,全球有6000-8000万对夫妇面临不孕之苦,有数百万人进行试管婴儿治疗,但临床中时常遇到卵子、授精及胚胎发育异常的情况,然而人们对这些异常背后的原因及机制所知甚少。

面对这一现状,复旦大学生物医学研究院教授王磊十多年前提出研究假设:遗传因素可能是导致人卵成熟与发育异常的重要原因之一。

通过深入攻关,2016年,王磊/桑庆团队发现 人类卵子成熟障碍的第一个致病基因——灵长类特异β-微管蛋白TUBB8,从而明确了此疾病为人类新遗传病 。该基因可解释约30%卵母细胞成熟障碍患者,如今已广泛应用于临床检测。继TUBB8之后,团队又陆续发现24个人类卵子成熟障碍的致病基因并明确了机制。由于一系列研究,团队受science邀请撰写综述。

研究论文“TUBB8基因突变致人类卵子减数分裂阻滞”(Mutations in TUBB8 and Human Oocyte Meiotic Arrest)在《新英格兰医学杂志》(The NEW ENGLAND JOURNAL of MEDICINE)发表

团队受Science邀请,撰写不孕不育遗传学综述

纺锤体的存在及其正常与否,直接决定了卵子是否能够正常成熟与受精。作为人卵纺锤体的主要组成部分,灵长类特异基因TUBB8的发现,标志着人类卵子成熟障碍机制研究迈出了第一步,同时也表明人卵纺锤体成分具有独特性。

那么,更为深层的核心问题在于:人卵如何从零开始组装成一个纺锤体?纺锤体是如何发展成为双极纺锤体的?为厘清生理机制,王磊/桑庆/武田宇团队持续深耕, 将研究聚焦至人卵纺锤体组装的早期阶段,即微管聚合机制研究

研究成果以“The mechanism of acentrosomal spindle assembly in human oocytes”为题,发表在《科学》杂志(Science)

2022年,团队发现人卵中存在 一种独特的微管组织中心,将其命名为huoMTOC,进一步揭示人卵纺锤体的独特之处,打破了此前学界普遍认为人卵中没有微管组织中心结构的观点

这一发现也破解了纺锤体组装的第一个环节,即微管聚合启动——人卵母细胞中的微管如何由原本散布的状态变为聚合状态。

首次描述人卵纺锤体组装过程

进一步揭示出独特机制

纺锤体微管聚合启动之后,最终双极状纺锤体如何形成?这是纺锤体组装过程的第二个重要环节,其中涉及纺锤体双极化过程中有哪些关键分子参与、双极化异常又将如何导致生殖障碍发生等关键问题。

王磊/桑庆/武田宇团队围绕第二环节持续突破,其最新研究成果 不仅首次描述了人卵双极纺锤体形成的完整过程,还明确了3个关键蛋白质在纺锤体双极化中的作用

研究显示,人卵纺锤体微管聚合启动后会经历一段较长时间的 “多极纺锤体”(Multipolar spindle)阶段,而后才形成双极状纺锤体,同时发现了调控纺锤体双极化的关键蛋白,并在临床多个卵子和胚胎发育异常患者中,鉴定到编码这些关键蛋白的基因存在突变,从而揭示了人卵纺锤体双极化的独特生理病理机制。

团队 通过免疫荧光和活细胞时间序列成像技术,首次对减数分裂开始后纺锤体的组装过程进行了高清晰度的实时观察 。结果显示,人卵母细胞核膜破裂之后,染色体动粒会相聚成簇。随后,新生微管负端在动粒附近聚合并初步形成纺锤体的极,将其命名为“小极(Minor pole)”。

在第一次减数分裂前中期,多个“小极”组装形成典型的“多极纺锤体”, 多极纺锤体状态持续长达7-9个小时 。在此期间,小极的数目逐渐增多并聚集,直到第一次减数分裂中期形成两个“大极(Major pole)”,最终完成纺锤体双极化过程-多极纺锤体转变为双极纺锤体。 “以上过程与有丝分裂及其他哺乳动物卵母细胞的纺锤体双极化过程截然不同,进一步展现出人卵纺锤体组装的独特机制。” 王磊强调。

人卵双极纺锤体形成机制

研究人员通过筛选发现了 3种蛋白(HAUS6,KIF11和KIF18A) 的缺失会导致人卵纺锤体双极化失败:HAUS6通过促进微管的扩增为纺锤体双极化提供物质基础;KIF11通过调控微管间的交联和相对滑动实现纺锤体的双向延伸;KIF18A通过抑制微管的过度生长维持纺锤体的稳定性。这3种蛋白相互配合,在人卵纺锤体双极化建立过程中发挥了重要作用。

在卵子和胚胎发育异常患者中进行的突变筛查显示,11位患者分别携带以上3种蛋白的致病突变,这些突变位点会引起不同程度的纺锤体双极化异常,从而导致卵母细胞成熟障碍、受精失败及早期胚胎发育停滞。

基础研究与临床诊疗密切结合

有望提供精准诊疗方案

这项成果不仅揭示了人卵纺锤体组装的独特机制,也为临床生殖障碍疾病的诊疗提供了理论依据。

“临床治疗离不开基础研究的支撑。”在王磊看来,只有了解清楚疾病发生的机制,才能针对这些机制和分子设计出有效的治疗策略,也正因此,研究的全过程与临床紧密结合。 目前,团队正积极探索可以逆转由基因突变引起的纺锤体双极化异常的治疗策略。

王磊/桑庆团队合影

“我们对人卵纺锤体组装的理解还处于初级阶段,许多细节仍有待探索。比如纺锤体组装完成后,纺锤体如何移动,如何排出第一极体等问题,都尚不明确。”王磊说。

长远来看,团队希望 全面揭示人类生殖过程中的独特生理与病理机制,特别是卵子受精和胚胎发育方面。 “人类在这些方面与小鼠以及其他哺乳动物存在显著差异,而这些差异现在看来,只是冰山一角。”王磊表示,迄今为止,团队通过一系列研究已揭示人类多项独特生理机制,随着研究不断深入,人类卵子发育独特性的全貌有望被进一步揭开。

从临床到基础再回到临床,通过解决基础科学问题最终使广大疾病患者受益,是团队共同的心愿。“这是一个长期目标,但每一步进展都为未来疾病的治疗带来希望。”

复旦大学生物医学研究院王磊、桑庆,上海交通大学附属国际和平妇幼保健院李文为通讯。复旦大学生物医学研究院武田宇、罗宇茜,上海交通大学附属国际和平妇幼保健院章美玲,上海市生物医药技术研究院陈标榜为本文的共同第一。此外,上海集爱遗传与不育诊疗中心孙晓溪、上海交通大学附属第九人民医院生殖中心匡延平、复旦大学附属妇产科医院金莉萍、河北医科大学第二医院郝桂敏、西北妇女儿童医院师娟子、广西壮族自治区生殖医院牛向丽也参与了该项研究。

文章链接

https://www.science.org/doi/10.1126/science.ado1022

组 稿

校融媒体中心

生物医学研究院

文 字

殷梦昊 丁超逸

图 片

受访者提供

责 编

殷梦昊

姚桐

▼更多复旦新闻,敬请留意复旦大学官方网站。


分子人类学详细资料大全

分子人类学是人类学的分支,利用人类基因组的分子分析以及DNA遗传信息来分析人类起源、民族演化、古代社会文化结构等多方面多层次的问题,是一门新兴交叉学科。

在过去分子人类学还没有兴起的年代,研究历史探寻民族起源只能靠有限的史料和考古发现来大概推测,这是非常具有局限性的。 尤其是史料,是非常有限的,也未必是真实的。 所以,分子人类学的兴起将大大打破这些局限,向人们揭示一个更真实更准确的历史,从而更加清晰地分析一个民族的起源。 分子人类学用DNA材料和计算生物学方法解答了很多人类学的问题。

基本介绍

基本介绍,与人类起源论,单倍体遗传点,线粒体DNA,Y染色体,DNA遗传,假设,不可靠性重组,汉族先民,人口移动,南方汉族,

基本介绍

分子人类学(Molecular Anthropology)是人类学的分支,利用人类基因组的分子分析以及DNA遗传信息来分析人类起源、民族演化、古代社会文化结构等多方面多层次的问题,是一门新兴交叉学科。主要方法是比较DNA或蛋白质序列,早期方法亦包括血清学的比较研究。通过检查不同特定住民的DNA序列,科学家能判断特定住民之间或之内的亲属关系。人类学家们根据基因序列的特定相似处判断不同的人群是否属于同一基因组(haplogroup),以及是否发源自同一个地方。这就得以帮助人类学家跟踪迁徙和定居的模式,去发现现代人类如何形成和发展的。2002年,中国第一所研究分子人类学的学术机构复旦大学现代人类学研究中心正式成立。 根据复旦大学的基因研究对照历史迁移记录,汉民族的扩张主因是历史上的由北往南的人口移动,并非所谓的南方少数民族接受汉文化形成了南方汉族。南方汉族的父系近八成来自中原南迁的北方汉族,母系则近六成来自南迁的北方汉族。

与人类起源论

分子人类学技术大量套用于人类学和考古学研究领域,在人类起源与演化、人群的迁徙与交流、人群间的亲缘关系,以及考古鉴定等方面发挥着越来越大的作用。1987年,英国《自然》(Nature)周刊上刊登了美国加州大学伯克利分校三位分子生物学家卡恩(R. L. Cann)、斯通金(M. Stoneking)和威尔逊(A. C. Wilson)的《线粒体DNA与人类进化》(Mitochondrial DNA and human evolution)一文,他们选择了其祖先来自非洲、欧洲、亚洲、中东,以及巴布亚纽几内亚和澳大利亚土著共147名妇女,从她们生产后婴儿的胎盘细胞中成功地提取出mtDNA,并对其序列进行了分析,根据分析结果绘制出一个系统树。由此推测,所测定的婴儿mtDNA可以将所有现代人最后追溯到大约29万~14万年,平均20万年前生活在非洲的一位妇女。她就是今天生活在地球上各个角落的人的共同“祖母”。其后,又根据mtDNA发生突变的速率计算出非洲人群分化出世界其他人群的大致时间,为大约18万~9万年,平均约13万年前。认为在大约13万年前,这个“祖母”的一群后裔离开了他们的家园非洲,向世界各地迁徙扩散,并逐渐取代了生活在当地的土著居民直立人的后裔早期智人,从此在世界各地定居下来,逐渐演化发展成现在的我们。这就是著名的现代人起源的“夏娃假说”。 2000年美国史丹福大学昂德希尔(P. A. Underhill)等利用变性高效液相层析技术,分析得到218个Y染色体非重组区位点构成的131个单倍型,对全球1062个具有代表性的男性个体进行研究,同样根据分析结果绘制出一个系统树。Y-DNA系统树所展示的结果与mtDNA系统树的结果非常相似。欧洲和亚洲等世界其他现代人群都起源于非洲,而美洲和澳洲现代人群又都起源于亚洲人群。这就是与“夏娃假说”相互应征的“亚当假说”。同样根据Y-DNA发生突变的速率计算出非洲人群分化出世界其他人群的大致时间在14万~4万年,平均约6万年前。 1997年7月,美国《科学》(Science)周刊发表了一篇文章,引起学术界一片喧嚣。德国慕尼黑大学的分子生物学家克林斯(M. Krings)等,对1856年发现于德国杜塞道夫城尼安德特峡谷的距今大约6万年左右的尼安德特人化石,进行了mtDNA的抽提和PCR扩增,并对提取出的DNA进行了测序。发现尼人的mtDNA序列中有12个片断与现代人类的完全不同,尼人的mtDNA处在现代人类的变异范围之外,推算得出的分化时间在30万年以上。而历史上尼人和现代人的并存历史在10万年以内,如果这两个人种之间有直接传承关系,其差异应该不超过10万年。由此推测,尼人不可能是现代人类的直系祖先,他们根本就没有将其血缘遗传给现代人类,只成为人类演化史上的一个旁支。这一研究结果支持“现代人起源于非洲的假说”。这一科学发现曾被评为1997年世界十大科技成就之一。其后,又有科学家成功地从出土于高加索和克罗地亚的尼安德特人化石中提取了mtDNA序列,同样得出尼人与现代人没有遗传联系的结论。 褚嘉佑等14位中国学者1998年在《美国科学院学报》(Proceedings of the National Academy of Sciences of the United Sates of America,PNAS)上发表了一篇文章也支持现代人起源于非洲的观点。他们利用30个常染色体微卫星位点(由2-6个碱基重复单位构成的DNA序列),分析了包括中国汉族和少数民族的南北人群在内的28个东亚人群的遗传结构,结果支持现代中国人也起源于非洲的假说。并且认为现代中国人群是由东南亚进入中国大陆,而非通过中亚移民过来的。但是由于样本量较少、群体代表性不强,且微卫星位点突变率较高,对追溯久远事件有一定局限性等原因,褚嘉佑等人的工作对证明东亚人群起源于非洲的观点还不十分令人信服。 1999年,宿兵等人对包括中国各省份的汉族和少数民族,以及东北亚、东南亚、非洲、美洲和大洋洲总共925个个体的不同人群,利用19个Y-SNP(Y染色体单核苷酸多态位点)构成的一组Y染色体单倍型,系统地研究了包括中国各人群在内的现代东亚人的起源和迁徙。结果显示包括中国各人群在内的所有现代东亚人群的Y-SNP单倍型均来自较晚发生的突变,而更早的类型仅存在于非洲。因此认为,现代东亚人全部来自于非洲的某个古代类型。而且,东亚人群的迁徙是从东南亚进入到中国的南方,再向北迁移逐渐扩散到中国各地区及东北亚,并有可能完全取代了生活在当地的原土著居民,而成为该地区的新居民。 对于经过漫长跋涉由非洲迁徙而来的这些现代人群,是完全取代了生活在东亚大陆上的原土著居民成为东亚地区的新居民,还是与当地的土著居民有着某些程度的融合,两者共同对现在的我们有遗传贡献呢?这个问题也令许多科学家有非常浓厚的兴趣。他们基于这样一个假设,即从非洲迁徙而来的现代人群并没有在群体上完全取代当地土著居民,当地土著居民也可能有少量的基因遗传下来,在以上实验的基础上扩大东亚地区的样本量,来看这些当地土著居民的可能贡献率或不完全取代的可能性有多少?这些遗留下来的基因又有可能保留在现代哪些人群中? 2001年,柯越海等人对来自中国各地区近12 000份男性随机样本进行了M89、M130和YAP三个Y染色体单倍型的分型研究。所选择的三个Y染色体非重组区的突变型M89、M130和YAP均来自另一个Y染色体单倍型M168。M168突变型是人类走出非洲并扩散到非洲以外其他地区的代表性突变位点,它是所有非洲以外人群Y染色体的最近的共同祖先,所以M168是现代人类单一起源于非洲的最直接证据,在除非洲以外的其他地区没有发现一例个体具有比M168更古老的突变型。该项研究结果显示万份样品无一例外具有M89、M130和YAP三种突变型之一,并没有发现个体携带有以上三种Y-SNP突变型之外的类型,也没有发现同时具有M89、M130和YAP突变中任意两个以上突变的个体,这一结果与非洲以外的世界其他地区的基因型分型结果是一致的。在所检测的所有中国份样品中全部都携带有来自非洲的M168突变型的“遗传痕迹”,因此认为,Y染色体的证据并不支持中国现代人独立起源的假说,而支持包括中国人在内的东亚现代人起源于非洲的假说。 其后,又有一些遗传学研究,特别是通过对Y染色体、线粒体DNA、常染色体及单核苷酸多态性等多种遗传标记和分型手段对东亚人群的广泛研究,结果都证明东亚现代人具有共同的非洲起源特征。通过对Y-DNA单倍型的变异速率推算出大致在距今约6万~1.8万年前,最早的一批走出非洲的现代人经由东南亚地区最先进入东亚的南方,随着东亚冰川期的结束,逐渐北上扩散至东亚大陆。而另外一支则沿着东南沿海从东南亚大陆向东逐渐进入太平洋群岛。

单倍体遗传点

男性和女性携带有两套连续遗传机制。第一套是Y染色体在男性间的遗传,从父到子。第二套连续遗传机制是线粒体DNA,即mtDNA在女性之间进行遗传。只有非常特殊的情况下,mtDNA在男性间进行遗传。

线粒体DNA

线粒体存在于细胞质里,是细胞的“能量工厂”,它们包含少量遗传物质---DNA。每个人的线粒体都来自母亲。与作为基因组的染色体DNA不同,线粒体DNA的优点在于它不会进行重组。DNA重组过于频繁就丧失追溯到父系源流的能力。而线粒体DNA却是在不断克隆自身,只会接受极少的父系mtDNA。线粒体DNA不但所处的位置与细胞核DNA不同,遗传方式也迥然有别--它测定线粒体DNA是追踪母系血亲的惟一办法。线粒体DNA的另一点优势在于,高度变化区域的进化快速,显示线粒体DNA的某些染色体领域趋于局外中立。因此线粒体DNA还被当作一种特殊的“钟”,用来估计家系大约是在多久之前彼此分离的。因此线粒体是从母系遗传的角度研究人类进化的重要工具,就像Y染色体是研究父系遗传的工具。同时,线粒体基因组是独立于核基因组的遗传物质,它普遍存在于真核细胞中,线粒体内包含有DNA和转录与转译系统,是具有一定自主性的细胞器。线粒体基因组具有的独特优点:线粒体DNA分子小、拷贝数高; 结构和组织简单而高度保守; 母系遗传,缺乏重组; DNA突变率高。线粒体DNA跟RFLP的原理是一样的,只不过目的DNA由基因组DNA变为线粒体DNA。 母系图除男性 细胞外,人身体所有细胞里面都有线粒体,但只有女性的线粒体基因能随其卵子遗传给后代。mtDNA是Mitochondrial DNA(线粒体DNA)的缩写,是承载线粒体遗传密码的物质。男人线粒体只伴随此男人生活一生,然后终结,不能遗传给后代。mtDNA表现为母系遗传。mtDNA结构类型是反映母系脉络的重要指标。通过检测现代人mtDNA,能弄清各民族、各地人的母系血缘关系。通过检测古尸线粒体,可弄清历史上各个民族间的母系血缘关系、历史故事、迁徙路线、历史名人的民族、身份。 母亲给儿女贡献了50%的遗传基因,对儿女遗传特性有着和父亲一样的影响力。古代一夫多妻,有时抢掠战败民族女性为妻为妾。胜族由于不适应败族地区气候地理条件,一般打完胜仗带着抢来的妾返回祖籍并共同生活生育儿女。异族妻妾生育的孩子虽有一半异族基因,但文化上被视作其父民族的人。儿子长大后继续到异族领地抢掠妻妾,生育的孙子辈已有75%异族血统,但仍被视作属于其爷爷民族的人。虽然孙子的Y染色体仍然和爷爷的一样类型,但其母系线粒体mtDNA,以及身体常染色体已和其爷爷的大不相同。如此不断循环,导致民族的文化、语言虽然还是祖先的,但若干代后民族人口的血统、基因已发生很大改变。 因此,一个民族、地区人群的母系线粒体mtDNA结构类型和构成比例,比父系Y染色体更能反映其遗传和血统特性。

Y染色体

Y染色体存在于细胞核中,即细胞核DNA(nDNA)。与mtDNA不同的是,Y染色体在非重组区域存在交换。 基因的本质是DNA链上有功能的片断,它参与蛋白质等的合成,最终决定了生物的特征,它的多样性也决定了生物界的多样性。此外,DNA链上还有更多没有具体表达功能的片断,这些片断不受自然选择压力的影响,可以匀速自由地突变,更忠实地记载了人群进化的历史。 DNA大部分存在于生物体细胞的细胞核内,此外,在细胞核以外的其他地方也有少量的DNA分子存在,如线粒体记忆体在线粒体DNA(mtDNA),植物的叶绿体记忆体在叶绿体DNA。在男性 中线粒 于 的尾部。在受精的时候, 只有头部进入卵子的体内,尾部则自然脱落,因此,子女的mtDNA只来源于母亲,呈现随母系遗传的方式。而父系遗传的最典型代表则是存在于男性 细胞核中的Y染色体(Y-DNA),卵子没有Y染色体。也即mtDNA只在母亲和女儿之间传递,呈严格的母系遗传;Y-DNA只在父亲和儿子之间传递,呈严格的父系遗传。 在分子人类学研究中,mtDNA和Y-DNA的研究在探究人类历史以及不同人群之间的渊源关系有很大的优势:mtDNA和Y-DNA均呈单倍体,无重组,这一特点可以使它们能够完整地保存母系或父系祖先的遗传信息,容易构建谱系树;mtDNA和Y-DNA的遗传呈单系遗传,可直接追踪母系或父系遗传的历史;mtDNA和Y-DNA的有效群体大小为常染色体的1/4,一方面使mtDNA和Y-DNA能在较短时间内积累比较多的突变,另一方面容易形成人群特异的遗传标记,提高了mtDNA和Y-DNA在进化研究中的信息量和解析度。

DNA遗传

线粒体只会遗传自母亲,以哺乳类而言,一般在受精之后,卵子细胞就会将 中的线粒体摧毁。 1999年发表的研究中显示,父系 线粒体(含有mtDNA)带有泛素(ubiquitin)标记,因而在胚胎中会被挑选出来,进而遭到摧毁。 不过某些细胞外的人工受精技术可直接将 注入卵子细胞内,可能会干扰摧毁 线粒体的过程。 由于母系遗传的特性,使得研究者能够借由线粒体DNA追溯到母系族谱(与之相对的为专门用来追溯父系族谱的Y染色体),但最近科学家发现的线粒体DNA重组特征对线粒体夏娃概念提出了挑战。 由于mtDNA并非高度保守,而是拥有较快的突变速率,因此可用来研究种系发生学,生物学家挑选少量不同物种的基因,分析其序列的保留与变异程度,可建立出演化树。

假设

线粒体DNA用于研究母系遗传的前提在于,线粒体DNA不容易重组和改变。但分子人类学的理论还远未成熟,分子数据套用在人类学问题时实际上常常被证实很难解释,这是分子序列的比较方法引起的后果。比如研究人种A和人种B在进行分子进化率的时候,就必须选择人种C进行参照,如果A和C之间的分子差别与B与C之间的差别类似,那么就推论A和B的分子率类似。同时由于科学依赖于未来的发现不会与现有理论产生矛盾。实际上,目前的发现也有否定线粒体遗传的假设,那么当前学说很有可能在未来20年内被完全否定。所以对待分子人类学研究的结论必须审慎,不能盲从。

不可靠性重组

科学家认为,线粒体DNA分子是相对稳定的,不会互相交换DNA片断,造成它们发生变化的唯一因素是自发变异。这种变异以相对稳定的速率进行并积累,可以作为“分子钟”使用。两个人的线粒体DNA的差异程度,就决定了这两个人最近的母系共同祖先生活在多少年前。科学家曾经对世界不同地区和民族的女性进行线粒体DNA调查,确定现代人的线粒体来自于约15万年前的一位女性,这位母系祖先被称为“线粒体夏娃”。 但在几年前,人们发现了一个罕见的例外,一名男子的线粒体DNA中,有一部分来自于他的父亲。为了检验线粒体DNA不会重组的假设是否正确,哈佛医学院的科学家对这名男子和他的父母进行线粒体DNA序列比较。结果发现,有一些来自父亲的线粒体DNA片断混合在母系DNA中。进一步试验表明,负责复制线粒体DNA的酶停止复制母亲的DNA、跳到父亲的DNA上从对应的位置开始复制时,就发生了线粒体DNA的重组。这一成果显示,线粒体DNA可能并不那么稳定,而会因为自发变异之外的原因发生改变。寻找人类母系祖先的研究,比人们原先认为的更复杂。 但美国科学家的新研究也显示,有关线粒体的一个关键科学假设可能存在问题,使得追溯人类母系祖先所用的“分子钟”不准确。美国哈佛医学院科学家说,mtDNA分子也会发生DNA片断交换和重组,这与此前人们所认为的不同。该成果发表在新一期美国《科学》杂志上,可能对以前的一系列科研成果造成冲击,涉及人类的进化、原始人类的迁徙,乃至各种人类语言之间的关系。

汉族先民

根据2007年研究,山西陶寺遗址的龙山文化居民中,上层贵族100%为O3类型,而根据2008年金力、李辉的数据,陕西仰韶文化的居民的Y染色体SNP类型也是O3,所以,我们可以清晰的看出,古代汉族先民,尤其是贵族,都是O3占有绝对主体的,仰韶文化和龙山文化居民的Y染色体成分是基本相同的,种族上是同一成分。 O3是汉族的绝对主体,占据非常重要的位置,根据2004年文波的数据,山东汉族为59.5%(110/185)、河南52%(26/50)、陕西汉族56.7%(51/90)、云南汉族63.4%(59/93)、广东汉族53.9%(34/64)、四川汉族57.1%(36/63)、浙江汉族是50.9%(54/106),张咏莉2002年福建汉族的为58.8%(47/80),2006年Hammer的数据北方汉族65.9%(29/44)、台湾汉族49/84(58.3%)(注意这个数据和张咏莉2002年福建汉族的58.8数据几乎一样,类似的还有Nonaka的台湾汉族,183个里106个O3,比例58.2%,福建闽南汉族和台湾汉族数据高度一致),XUE的2006年数据,哈尔滨汉族O3频率是68.6%(23/35),Lu chuncheng的数据中南京汉族为53.6%(429/800)、马明义的数据中四川汉族61.8%(211/341)2007年Zhou ruixia的数据,甘肃71.3%(62/87),所有数据中,除了河北人83.3%(10/12)由于样本太少外,根据2003年李辉的数据显示,福建长汀客家人中O3的比例高达74.3%(110/148)。还有一个类似的数据,是2002年李辉在《广西六甲人来源》一文中的数据,为77.8%,(21人/27人)。 总体上看,所有汉族中,O3都是主体的,不同的取样可能造成数据有波动,但总体出现频率大部分一般在50-70%之间,虽然幅员辽阔人口众多,但汉族内部却表现出了惊人的一致,显示了汉族的共同起源。 今天12亿汉族的绝大多数,都是5000年前中原原始居民的直系后代。主体是仰韶文化和龙山文化的O3(两种文化居民的父系成分相同),O3也就是来自中原仰韶文化和龙山文化的居民构成了各地汉族父系远祖的压倒性绝对多数,其次是河北的磁山文化的O1,红山文化的O3、O2和O1,和良渚文化的O1,其次还有湖北大溪文化和江西吴城文化的O2a,今天广阔的中国土地,仍然为5000年前中国远古汉族先民的子孙所占据。

人口移动

Geic Evidence Supports Demic Diffusion of Han Culture,(“遗传学证实汉文化的扩散源于人口扩张”)(Bo WEN, Hui LI, et al, Nature, No.431,September 2004, pp.302 - 305) (英国的《自然》杂志,与美国的《科学》和《细胞》杂志被公认为世界自然科学界三个最顶级的学术刊物。) 论文用基因学证据,论证了南北方汉族父系血统的相同起源,汉文化的扩散源于人口扩张,而不是所谓的融合。南北汉族的相貌体格的差异主要是母系差异和地理环境造成的。

南方汉族

据史料记载和考古发现,汉族起源于黄河流域,是从黄河流域不断往南迁徙的。根据复旦大学的基因研究对照历史迁移记录,汉民族的扩张主因是历史上的由北往南的人口移动,并非所谓的南方少数民族接受汉文化形成了南方汉族。南方汉族的父系近八成来自中原南迁的北方汉族,母系则近六成来自南迁的北方汉族。也就是说现代南方汉族主要成分是从中原南迁的北方汉族,而不是所谓的南方少数民族接受汉文化而形成了南方汉族。

人类卵子会对某些人的精子更加喜爱,甚至为其开后门,这是为什么?

每个人体中生存的细胞就多达200多亿个,每个人体中细胞的数量,相当于目前地球人口总数量的3倍,可见细胞家族之庞大。 这么众多的细胞家族成员,每一个都是一个独立的生命体。 单一的细胞既可以独立自由地生活在特定的溶液中,也可以通过特定的方式,有序组合成不同的生命体。

比如白细胞,白细胞每天都游走在身体中的各个角落,搜寻着可能进犯我们的病原体,它们一旦发现病毒,就会将其紧紧铐住,然后将病毒吞食。

甚至你可以将一个细胞看成一个小的独立王国,每个王国负责的任务并不相同。 比如细胞膜负责保卫细胞内部的安全,它有人脸识别系统,像微小分子,诸如水分子和氧分子等等,都已经进入它的数据库,可以自由通行,像大分子,则还有专门的通道,而DNA则相当于这个细胞王国的国王,负责发号施令。

许多细胞的运动方式是不一样的,比如动力细胞,就相当于是一个人在跑步。 因为它有“脚:。

而精子和卵子作为人类的生殖细胞,它们也有自己的运动方式,被誉为“光学显微镜与微生物学之父”列文虎克,他经由手工自制的显微镜,首先观察并描述单细胞生物,他当时将这些生物称为“animalcules”。

1677年,列文虎克将他新研制的显微镜对准自己的精液,首次观察到了人类的生殖细胞,这被他本人称为生涯中的重大发现,通过显微镜,他发现精子是由尾巴推动的,当精子头部旋转时,尾巴似乎左右摆动。 这个认知左右了340年人类对精子运动的理解。

近日,在《Science Advances》上。 英国谢菲尔德大学(University of Sheffield)科研团队发表了一篇论文《Sperm dont swim anything like we thought they did, new study finds》,表示精子的运动方式并不是我们想象的这样,这只是列文虎克的视觉错误。

得益于科技的发展与进步,谢菲尔德大科研团队利用能够进行三维成像的显微技术和每秒可拍摄帧的高速摄影机,在显微镜载玻片上记录了人类精子的游动过程。

3D显微镜和高速视频显示,精子根本不是那种简单、对称的运动。 相反,它们以一种滚动的旋转来补偿它们的尾巴实际上只向一侧跳动的事实。

精子的尾巴并没有像鞭子一样左右摆动。 相反,它们的运动方式其实是一种不对称的、螺旋式的三维前进,并非单纯的左右摆动。

精子只能朝一个方向前进。 为了扭转这种不对称的尾部运动,精子头部在尾巴运动的同时以一种抖动的方式做旋转运动。 头部旋转和尾部实际上是由两种不同的细胞机制控制的两种不同的运动。 但当它们结合在一起时,在360度旋转的过程中,单侧的尾部运动变得平衡,这就增加了向前推进的能力。

这种运动方式其实和太阳系的行星跟随太阳在银河系中穿行的样子差不多。 以银河系平面为参照,整个太阳系都沿螺旋式轨道绕着银河系中心旋转。 而且,太阳系中的行星轨道也呈螺旋式。

不仅如此,在我们日常生活中,螺旋式的事物也非常常见,包括植物形态、花朵形态,从植物到动物、从生物到非生物,大到宇宙、小到DNA。这是一个巧合还是隐藏着什么奥秘,目前我们还未得知

同样是在近日,《英国皇家学会会刊·B》上发表,标题为《卵子的化学信号促进了人类神秘的雌性选择》《Chemical signals from eggs facilitate cryptic female choice in humans》。

这篇文章显示在人类选择了配偶之后,卵子还会进行二次择偶,从精子当中选出自己心仪的对象,至于卵子的择偶标准,择偶要求是什么样,目前科学家还无法深入微观层面去了解。

我们要知道,除了人类之外,所有动物生存的核心命题都是繁衍,所以雌性都会挑选对雄性进行挑选,让更加能适应环境的基因得以留存,这是物种得以延续的主要原因。

尽管人类具有了自己意识,不再以繁衍为核心命题,但是卵子还是在兢兢业业执行着自然赋予的命令,寻找最优质的配偶,实现基因最优,这样将有利于人类种群更好地适应环境,从而实现物种的延续,可以说,卵子为了人类可以说操碎了心。

通过从16对接受生育治疗的夫妻中采集了卵泡液和精子样本,然后通过不同的组合放在一起,科学家发现,首先卵子会对精子进行一个初步的判断,只有被卵子选中的精子才会进入第二关,然后第二关就是赛跑,在赛跑过程中,精子要经过赛道障碍、化学攻击等残酷的试验,可以说精子为了得到卵子的垂青,那是跨越了千山万水,踏遍了“刀山火海”。 在这一步,绝大部分的卵子将会被淘汰。

当精子历经考验终于靠近卵子后,卵子会立即释放出卵泡液(卵泡液是在卵子发育和释放过程中包围着卵泡的富含营养的液体,精子必须游过卵泡液才能到达未受精卵),它诱导具备极强基因相容性的精子靠近它并结束这一择偶过程,而其他精子则会因为卵泡液前进受阻,惨遭失败。

貌似最后卵子的行为有些作弊的嫌疑,但是卵子之所以这样做,还有那句话,为了实现基因最优。

而且科学家发现,虽然人类自身选择了配偶,但是不代表配偶的精子也能够得到卵子的垂青,卵子并不总是与女性对伴侣的选择一致。 当比较两个男人的精子时,卵子从中意的男人那里吸引的精子要多出18%到40%。

因为只有一颗精子能够和卵子结合,这也就大大提高了卵子被自己喜欢的精子受孕的几率,这可以说是堂而皇之的“开后门”。 而卵子喜欢男性的标准究竟是什么?科学家目前还处于研究之中。

至于卵子为什么会这样挑三拣四,对于卵子和女性来说,受精之后会有很多额外的代价,比如怀孕的花费。 由于这些成本,卵子会慎重选择让它们受精的精子,从而诞生最优质的宝宝,这样存活率更高,适应环境的能力会更强,更利于种群延续,这样就可以相应减少女性怀孕的成本。

在这个过程中,精子完全是处于被动的地位,因为精子和卵子的目的并不一样,精子的目的是为了成功使得卵子受精,从而让自己的基因延续,而卵子则是希望可以实现基因最优,从而减少女性怀孕的成本。

《Sperm dont swim anything like we thought they did, new study finds》

《Chemical signals from eggs facilitate cryptic female choice in humans》。

亲~在线跪求生命科学研究在现代人类社会发展中有哪些应用,要理论联系实际的,字数在600字左右。。跪求~!

基本概述生命科学是系统地阐述与生命特性有关的重大课题的科学。 支配着无生命世界的物理和化学定律同样也适用于生命世界,无须赋予生活物质一种神秘的活力。 对于生命科学的深入了解,无疑也能促进物理、化学等人类其它知识领域的发展。 比如生命科学中一个世纪性的难题是“智力从何而来?”我们对单一神经元的活动了如指掌,但对数以百亿计的神经元组合成大脑后如何产生出智力却一无所知。 可以说对人类智力的最大挑战就是如何解释智力本身。 对这一问题的逐步深入破解也将会相应地改变人类的知识结构。 生命科学研究不但依赖物理、化学知识,也依靠后者提供的仪器,如光学和电子显微镜、蛋白质电泳仪、超速离心机、X-射线仪、核磁共振分光计、正电子发射断层扫描仪等等,举不胜举。 生命科学学家也是由各个学科汇聚而来。 学科间的交叉渗透造成了许多前景无限的生长点与新兴学科。 也是目前2011年很受欢迎的一种专业..本段主要课题主要课题生命科学研究或正在研究着的主要课题是:生物物质的化学本质是什么?这些化学物质在体内是如何互转化并表现出生命特征的?生物大分子的组成和结构是怎样的?细胞是怎样工作的?形形色色的细胞怎样完成多种多样的功能?基因作为遗传物质是怎样起作用的?什么机制促使细胞复制?一个受精卵细胞怎样在发育成由许多极其不同类型的细胞构成的高度分化的多细胞生物的奇异过程中使用其遗传信息?多种类型细胞是怎样结合起来形成器官和组织?物种是怎样形成的?什么因素引起进化?人类现在仍在进化吗?在一特定的生态小生境中物种之间的关系怎样?何种因素支配着此一生境中每一物种的数量?动物行为的生理学基础是什么?记忆是怎样形成的?记忆存贮在什么地方?哪些因素能够影响学习和记忆?智力由何而来?除了在地球上,宇宙空间还有其它有智慧的生物吗?生命是怎样起源的?等等。 主要学习内容生命科学概论这门课程主要学:生命科学的概念与研究内容、生命科学研究简史、生命科学研究热点与发展趋势、生命伦理学)、生命科学基础(生命的物质基础、生命的基本现象、生物的遗传与变异、生命的起源与进化、生物的多样性、生物与环境)和现代生命科学(生命科学与现代生物技术、生命科学与农业科学、生命科学与环境科学、生命科学与生物能源、生命科学与现代医学、生命科学与药物的研究与开发、生命科学与海洋生物资源、生命科学与军事生物技术、生物信息学与生物芯片、生命组学与系统生物学本段显著特点当代生命科学的显著特点是:分子生物学的突破性成果,成为生命科学的生长点,使生命科学在自然科学中的位置起了革命性的变化。 20世纪50年代,遗传物质DNA双螺旋结构的发现,开创了从分子水平研究生命活动的新纪元。 此后,遗传信息由DNA通过RNA传向蛋白质这一“中心法则”的确立以及遗传密码的破译,为基因工程的诞生提供了理论基础。 蛋白质的人工合成,使人们认清了生命现象并不神秘。 这些重大的研究成果,阐明了核酸和蛋白质是生命的最基本物质,生命活动是在酶的催化作用下进行的。 绝大部分的酶的化学本质是蛋白质。 蛋白质是一切生命活动调节控制的主要承担者。 从而揭示了蛋白质、酶、核酸等生物大分子的结构、功能和相互关系,为研究生命现象的本质和活动规律奠定了理论基础。 本段鉴定技术生命科学中的亲子鉴定技术 通过遗传标记的检验与分析来判断父母与子女是否亲生关系,称之为亲子试验或亲子鉴定。 DNA是人体遗传的基本载体,人类的染色体是由DNA构成的,每个人体细胞有23对(46条)成对的染色体,其分别来自父亲和母亲。 夫妻之间各自提供的23条染色体,在受精后相互配对,构成了23对(46条)孩子的染色体。 如此循环往复构成生命的延续。 本段基因检测生命科学中的基因检测基因来自父母,几乎一生不变,但由于基因的缺陷,对一些人来说天生就容易患上某些疾病,也就是说人类DNA人体内一些基因型的存在会增加患某种疾病的风险,这种基因就叫疾病易感基因。 只要知道了人体内有哪些疾病的易感基因,就可以推断出人们容易患上哪一方面的疾病。 然而,我们如何才能知道自己有哪些疾病的易感基因呢?这就需要进行基因的检测。 如何进行基因检测是如何进行的呢?用专用采样棒从被测者的口腔黏膜上刮取脱落细胞,通过先进的仪器设备,科研人员就可以从这些脱落细胞中得到被测者的DNA样本,对这些样本进行DNA测序和SNP单核苷酸多态性检测,就会清楚的知道被测者的基因排序和其他人有哪些不同,经过与已经发现的诸多种类疾病的基因样本进行比对,就可以找到被测者的DNA中存在哪些疾病的易感基因。 基因检测不等于医学上的医学疾病诊断,基因检测结果能告诉你有多高的风险患上某种疾病,但并不是说您已经患上某种疾病,或者说将来一定会患上这种疾病。 基因检测作用通过基因检测,可向人们提供个性化健康指导服务、个性化用药指导服务和个性化体检指导服务。 就可以在疾病发生之前的几年、甚至几十年进行准确的预防,而不是盲目的保健;人们可以通过调整膳食营养、改变生活方式、增加体检频度、接受早期诊治等多种方法,有效地规避疾病发生的环境因素。 基因检测不仅能提前告诉我们有多高的患病风险,而且还可能明确地指导我们正确地用药,避免药物对我们的伤害。 将会改变传统被动医疗中的乱用药、无效用药和有害用药以及盲目保健的局面。 本段发展展望生命科学发展与展望 中国工程院院士 巴德年巴德年这个世纪是生命科学的世纪,作为医学,长期以来的任务是防病治病。 可是,从现在开始,医学的任务将主要是维护和增强人们的健康,提高人们的生活质量。 在这个范围内,过去医学所面临的是病人,现在医学将面对的是整个人群,以前的医学都在医院里,而现在在欧洲、北美,有半数的医生已经离开了医院,他们在社区,和老百姓生活在一起,指导老百姓的保健、医疗,更重要的是在指导那里的人们如何正确的生活。 我们国家当今还有97%的医生在医院里。 随着时代的发展,医生将也要逐渐走向社会,走入人群。 从这个意义上讲,中国的医生资源配置,也必然要发生变化。 现在中国还没有一个概念,就是通往急诊室的快速、绿色通道。 建设急诊快速、绿色的通道是完全必要的。 方便就医的观念就是未来的方向。 很多国家已经开始了《脑死亡法》的执行,脑死亡以后,器官组织、细胞,由于有循环的支持还在活着。 如果这位死人生前有很好的风格,提出把脏器献给其他人,就可以做肾脏、肝脏的移植。 人类基因组基本完成以后,对医学的影响很大,还将发生更深刻的影响。 很多基因疾病,也可以通过生活改善、环境改善来防治。 现在一提药就是化合物,不久的将来,药品不仅是化合物,蛋白质可以是药,基因可以是药,细胞可以是药,甚至某些组织和器官也可以是药。 正因为这样,以后的药审,首先审查的不再是药理、毒理、临床,而首先是伦理,进行所有一切之前先要有伦理审查。 为什么讲这个?因为,基因要变成药物,或者将来组织器官一旦成为药物,首先是允许不允许。 回顾20世纪下半叶生命科学的重大突破,可以展望21世纪生命科学作为先导学科的前景。 50年代:1953年4月,《Nature》 发表了美国生物学家沃森和英国物理学家克里克共同研究的成果-­­ DNA分子的双螺旋结构模型。 此模型的建立,是分子生物学诞生的标志,打开了“生命之谜”的大门,改变了生物学在整个科学中的地位,同时还给技术科学和社会科学带来了巨大的影响和冲击,因此,被称之为是“生物学的革命”。 1953年NATURE60年代:1965年9月15日报道, 我国首次用人工方法合成具有生物活性的牛胰岛素获得成功。 这是在控索生命起源过程中的一次突破。 它突破了一般有机物分子与生物大分子的界限,带来了人工合成生命的曙光;它更有力地打破了生命神秘论,揭示了生命与非生命物质的统一性。 人工合成牛胰岛素70年代:70年代初,随着限制性内切酶的发展和DNA分子杂交技术的建立,分子生物学进入了技术化时代,基因工种学也有所发展,出现了基因重组技术,从而开创了基因工程这一生物技术的新领域。 在这个基础上,现代生物技术逐渐兴起,特别是近十多年来发展很快,越来越受到世界各国的重视。 80年代:PCR技术发明,美国加州Cetus生物技术公司的史密斯发现在克隆过程中,不用细菌来复制经筛选的DNA,而用DNA多聚酶来进行复制,因为细菌本身也用它来复制DNA。 他发明的这种方法叫多聚酶链反应,简称PCR。 用这种方法可以扩增试管中的任何特异性DNA序列。 90年代:克隆动物掀起热潮。 在胚胎学上,克隆是指通过无性繁殖的手段,从一个细胞获得遗传上相同的细胞群或个体群,这些细胞叫克隆细胞,个体群称为克隆动物。 直到本世纪末,人们才有足够的知识和科学实验结果,能把某一成年动物的个体细胞移入一个去除遗传物质的成熟卵母细胞,然后移入另一只成年动物体内,让它生长发育,最终产生具有与体细胞相同的基因的幼体-克隆动物。 Wilmut I et al 在《Nature》1997,385:810~813报道,用3种新的细胞群细胞作为供体细胞,进行细胞核移植,获得了活的绵羊。 世界上第一只克隆羊这3种细胞是从第9天胚胎的胚盘细胞,第26天胎儿的成纤维细胞和6岁成年绵羊妊娠后3个月的乳腺上皮细胞经体外培养获得的。 实验结果,3种不同源细胞的核移植,分别得4只、3只和1只羔羊。 体细胞作为供体细胞进行细胞核移植的成功,无疑是20世纪生物学突破性成就之一。 其技术难度大,涉及领域较广,需要多种实验程序,但由于它具有潜在的应用价值,因而一直吸引着众多的科学家执着地去探索。 1997年是克隆年。 2月24日,英国罗斯林研究所与PPL生物技术公司宣布,他们利用一只6岁母羊的体细胞于1996年7月成功地繁殖出了一只小母羊多莉。 当即被誉为本世纪最重大,同时也最有争议性的科技突破之一。 许多国家都将其评为1997年最突出、最重大的科技成就,如德国《焦点》新闻周刊与美国《Science》周刊评出的1997年10大科技成就,多莉均榜上有名。 美国《大众科学》评出100 项科技成就中,多莉名列榜首。 3月2日,美国宣布利用不同的胚胎细胞于1996年8 月成功地复制出了两只基因各异的猴子。 3月罗斯林研究所又发布消息, 他们正利用死牛的细胞进行无性繁殖试验。 这是世界上首次利用已死亡动物进行克隆试验。 如果这项试验获得成功,克隆死去的人是否将成为可能?7月24日,他们又宣布于1997年7月繁殖出世界上第一批无性繁殖的转基因羊。 其中7月9日出生的小母羊波莉已被确认含有植入的人类基因。 标志着朝着大规模为人类服务阶段迈了一步。 8月6日,美国威斯康星州一家生物技术公司宣布于6个月之前克隆出一只毛色黑白相间、名为“基因”的小公牛,可用来大批复制繁殖出多奶、多产肉的优质牛。 10月中旬, 英国巴斯理工大学宣布培育出无头青蛙胚胎。 这种技术改良后,有可能利用人体组织培养出人体无头胚胎,待其发育成熟后,从中取下相应器官进行人体器官移植,解决了全球移植供体短缺问题。 日本、法国、巴西、韩国等国也纷纷开始动物无性繁殖技术研究。 德国科学家1997年初宣布培育出转基因羊,其奶液中含有人体所需的血凝蛋白。 俄罗斯则培育出一只转基因绵羊,可用来制作奶酪,还可用来提炼药品。 克隆技术的突破是一项伟大的科学成就。 该技术施用于组织、植物和动物,已导致癌证、糖尿病和恶性纤维化等疾病新疗法的成功开发;将来可用来为事故中受伤者制造代用皮肤、软骨或骨组织,以及为治疗脊髓受伤而制造神经组织。 开发前景广阔。 美国芝加哥科学家理查德·席德于 12月5日一次生育技术研讨会上,谈到计划借用多莉的技术,利用一些显微操作器械将取自某位妇女卵子中的DNA 剔除出去,代之以将要克隆的那个人的DNA,一旦受精,这个受精卵就会分裂为50~100个细胞,此时形成的胚胎就可以移植到体内,一个婴儿克隆体就会在9个月之后出生,并且,他打算将生产过程企业化,最终目的是在美国设10~20个复制诊所,另在海外设5~6个同类型诊所。 全世界每年克隆20万人,受到各国政府及科学家的谴责、 反对、禁止。 2月23日罗斯林研究所和英国PPL医疗公司宣布,该公司又克隆出一头牛犊,名叫“杰弗逊先生”,用的是细胞核移植技术,但用的是胚胎细胞,故与多莉不同。 20多年来,生物技术在工业、农业、化学、环境保护等各个领域都有广泛的应用,但迄今为止,生物技术最突出的成就是在医学方面。 由于基因工程师已经掌握了基因剪切、拼接和重组技术,因此可以在生物体内取出无用基因,加入有用基因。 生产出新的药物,创造出新的诊断、治疗方法,例如1962年以前,用于治疗糖尿病的胰岛素,只能从猪或牛的胰脏中提取。 1978年,利用基因工程技术人工合成胰岛素取得成功,此后不久,科学家已能够用经过基因转移的微生物,批量生产纯净的人工胰岛素;用于治疗侏儒症的人体生长激素于1979年研制成功,1983年应用于临床。 1986年,在美国和欧洲,基因工程干扰素先后投放市场;此后,促红细胞生长素、乙肝疫苗等一大批基因工程药物相继投放市场。 现今世界已有50多种生物技术新型药物和疫苗投放市场。 我国已有自行研制的15种投放市场。 80年代末,我国也研制成功了基因工程干扰素,并用于临床和实现了产业化。 科学家认为,基因工程师在今后几年内,将有可能研制出治疗免疫系统疾病、心血管疾病和癌症等顽疾的基因工程药物。 利用生物技术开发出的新疗法也日益增多,在治疗遗传性疾病和免疫系统疾病方面,尤为突出,例如,美国国立卫生研究院的科学家用基因疗法治疗一名腺苷脱氨酶缺乏症的患儿。 他们将能分泌腺苷脱氨酶的健康基因注入患儿体内,患儿免疫系统缺陷得到修复,功能恢复正常。 我国复旦大学遗传研究所与长海医院合作,采用反转录病毒基因转移技术,治疗两例血友病患者,取得了显著疗效,长期依靠输血维持生命的患者,关节出血、肌肉萎缩等症状大为改善,体内凝血因子浓度成倍上升,凝血活性大大提高,已持续18个月未进行输血治疗。 这是迄今世界上治疗血友病疗效最好的一例。 1990年国际上正式将基因疗法用于临床。 经卫生部批准,上海复旦大学遗传研究所与长海医院的基因治疗血友病技术,已正式应用于临床,成为我国第一例获国家批准的基因治疗技术。 迄今,在临床实践中应用生物技术开发的诊断、检测装置已有数百种,其中最重要的是血液产品筛选试验装置,这种装置可以保证血液制品不被艾滋病毒、乙型和丙型肝炎病毒所污染。 生物技术在农业、畜牧业和食品工业中的应用也引人注目。 1994年5月18 日,美国联邦食品和药物管理局正式批准应用基因工程培育的西红柿上市销售。 加州基因公司投资2000万美无,耗时8年培育成功的这种转基因西红柿,不易腐烂,耐贮存和运输,可以在充分成熟后再进行采摘,所以味道特别鲜美。 日本培育成功的转基因西红柿也已在筑波市种植。 抗病虫害马铃薯已在墨西哥培育成功,去年开始,墨西哥政府已向农民供应这种转基因马铃薯种苗,这样,每年约可避免60%~10% 的损失。 不怕除草剂的转基因棉花、专供织牛仔布的蓝色棉花、具有杀虫能力的转基因烟草均已培育成功。 最近我国科学家利用低能离子束技术培育出世界首例转基因水稻,利用基因重组技术培育出花期长,能改变花色的牵牛花,表明我国植物基因工程已缩小了与世界水平的差距。 在动物基因工程方面也硕果累累。 进入90年代以来,转基因动物-牛、羊、猪、鸡等相继培育成功。 欧洲莱夫德生物工程公司不久前培育了一头带人类基因的奶牛,它的雌性后代能产含有铁乳酸的奶,这种牛奶像人的母乳那样,能促进儿童吸收铁元素。 1992年,英国爱丁堡医药蛋白公司,培养出一种叫“特蕾西”的转基因绵羊,这种羊的奶中含有一种能控制人体组织生长的蛋白酶。 这种蛋白酶只存在于人体,无法用化学方法合成和进行工业化生产。 所以,“特蕾西”羊的培育成功,引起医药界的极大兴趣,德国拜尔化学公司不惜重金买下了这种羊的使用权。 英国爱丁堡罗斯林生理和遗传研究所培育出一种转基因公鸡,它的雌性后代所产的蛋中含有能治疗血友病所必须的凝血因子和治疗肺气肿病的一种人体蛋白质。 今年1月,以色列科学家也培育成功一头名为“吉蒂”的山羊,“吉蒂”身上带有人类的血清蛋白基因。 “吉蒂”的雌性后代所产的每一升牛奶中可以提取10克白蛋白,血清蛋白是人体血浆中的一种主要成分,它可以用来治疗休克,烧伤和补充血液损失。 英国剑桥大学的科学家培育出能为人体提供心、肺、肾的转基因猪,这种猪的器官移植到人体可大大降低受体排斥的危险性。 当前,世界各国均增加对生物技术研究的投入,大力发展生物技术产业,开发生产生物技术产品。 近20年来,美国成立的生物技术公司已达1000多家。 从1998年开始,美国生物技术产业的收益开始大幅度增加。 90年代出现了生物技术产品销售的黄金时期。 预计到1995年底,销售额将达60亿美元,1995年美国用于生物技术开发的经费将达40亿美元,日本政府最近决定将生物技术、新材料和新能源作为科技开发的重点领域。 日本不惜花费巨资,大量购买美国的生物技术成果和专利,发展自己的生物技术产业。 日本的高速发展已威胁到美国在生物技术领域的领先地位。 美国国家研究委员会已呼吁停止向日本的单向技术输出,英国政府调整了科技发展战略,决定优先发展生物科学技术。 作为发展中国家的泰国,每年用于生物科学的研究经费达6000万美元,为了加速发展生物科学技术,泰国专门成立了遗传基因工程学与生物技术中心。 我国已将生物工程技术列入“863”高科技发展计划。 随着时间的推移,生物技术产业在规模和重要性方面,都将超过计算机工业,成为21世纪发展最迅速的产业!21世纪将是生命科学世纪!本段生命之书谱写生命之书伟 农4月14日,科学家完成了对人类基因组的测序,也就是说,他们终于撰写完了曾经被认为是不可能的人类生命之书;这本书中,包含着人类自身的许多秘密;包含着改造医药、了解疾病的关键;更包含着所有人对生命科学改造生活的殷切期望。 一个全新的生命科学时代拉开了序幕。 生命之书最后一个字符4月8日,美国东部夏令时当日零点,全球16个实验室通过电子邮件将最后一个比特的基因代码传输到一个中央数据库中,走完了人类基因组计划13年漫漫探索路上的最后一步。 凌晨两点,美国国家卫生研究院院长、计划负责人柯林斯在华盛顿郊外小镇贝塞斯达的一个小型庆祝会上宣布,人类基因组计划正式结束。 从此,人类基因组计划走进历史--开工:1990年;竣工:2003年;参与国:美国、英国、德国、法国、日本和中国;耗资:26亿美元;成果:排出人类遗传物质中大约30亿个遗传密码的顺序。 人类基因组计划被称为生命科学的“登月计划”,难度可想而知。 然而进展却比预想的要顺利。 此前,科学家至少两次宣布过该计划的完工,但推出的均不是全本,而是人类基因组草图。 这一次,科学家最新杀青的全本“生命之书”也只覆盖了人类基因组的99%。 然而,与前两次人类基因组的宣布相比,这次无论是科学界,还是政界,似乎平静得多。 也许正如负责人类基因组的科学家在宣布这一消息时所引用的莎士比亚名言“过去的只是序幕”,科学家们已无暇回味人类基因组的成果,因为更加艰巨的任务还在前方。 在“人类基因组计划”正式结束之后,一个由美国能源部负责的新计划“基因组到生命”已经开始,新的探索将把基因研究推进到生命的每一个层面,例如,基因对于人种的作用,对于个性、行为的影响等等。 专家们说,进一步的研究将有可能带来社会、伦理道德和法律等方面的一系列争论。 黄金时代刚刚开始1953年4月25日,英国《自然》科学杂志发表了詹姆斯·沃森和弗朗西斯·克里克的论文,这一成果被很多人认为是“20世纪最重要的科学发现之一”:遗传物质DNA(脱氧核糖核苷酸)是双螺旋结构。 自此,人类在生命科学探索路上突飞猛进。 但DNA内的遗传密码究竟如何排列等难题,一直困扰着世界各国科学家。 DNA双螺旋结构与2000年最初宣布的人类基因组草图相比,基因组全本填补了草图中的许多漏洞,并作了不少修改。 草图每1万个碱基中有一处错误,现在,这一错误率下降到了10万分之一。 目前,研究人员认为的一个最主要和最大的问题是,人到底需要多少条基因来完成生命的发育和成长。 目前的估计在2.5万至3万条之间,远低于科学家最初估计的10万条。 弗朗西斯·柯林斯说,真正的分析刚刚开始,“我们将弄清人与人之间的共同之处和许多不同之处”。 是的,人类才读懂了这本大书的所有字母,但更浩瀚的“故事”仍在等待读出。 今天已经完成的只不过是对这本书的惊鸿一瞥。 而且已完成的也只覆盖了人类基因组所含基因区域的99%,所剩1%为现有测序技术无法解决的部分。 早在人类基因组全本完成之前,科学家就已经把目标转移到基因功能鉴定和蛋白质研究等方面。 科学家认为,至少4000种基因与人类疾病的发生有直接关系,还有大量基因与疾病有千丝万缕的联系。 但是,在确定致病基因之前,必须首先分析出基因组上数万条有遗传意义的基因的位置、结构和功能等。 在弄清导致疾病的基因后,基因测试将取得迅猛发展。 以癌症为例?这种疾病通常需要数年时间才能形成,有效的测试能够警告人们可能有患癌症的危险。 基因测试也能帮助人们更好地了解自我。 许多来自有某种家族疾病史家庭的人早就想弄清自己是否注定要得家族遗传病。 当然,有些人出于隐私忧虑会拒绝接受检测。 科学家预言,在“人类基因组计划”完成后的10至20年内,基因医学将进入黄金时代。 生命之书背后的故事人类基因组计划人类基因组计划可以追溯到1984年,当时科学家们在美国犹他州一滑雪胜地聚会,探讨如何识别日本广岛原子弹轰炸幸存者的基因突变。 美国能源部顾问委员会在1987年的报告中敦促美国开始人类基因研究行动,并预见这一研究“在广度和深度上都是非凡的”,“将最终为人提供一本人类之书”。 1988年,美国一份联邦报告批准了人类基因组计划,1990年美国国会开始为计划提供资助,研究拟定在2005年9月30日结束。 同时,在研究过程中公开所有发现。 这一计划的目标是:测出人体基因组中包含的30亿个碱基对的排列顺序;确定24对染色体上的基因分布;绘制一幅分子水平的人体解剖图;把人体基因的全部遗传信息输入基因库,帮助科学家掌握有关碱基对如何组成基因、每个基因的功能、它们如何相互影响以及控制人的生命过程。 当时,并不是所有科学家认为这一研究具有可行性,因为必须的技术几乎还不存在。 计划开始后的最初几年中,研究员大多致力于开发基因分析方法,计算生物和信息存储技术因此进展迅速。 计划实施之初,鉴别一个碱基对需花费10美元。 一个训练有素的技术员每个工作日可以鉴别出大约1万个碱基对。 现在,一个碱基对的测定费用只有5美分,“闪电式”机器人每秒钟可以处理1万个碱基对。 1999年,中国也加入了这一研究,承担了1%的测序任务。 当年,人类基因组计划大大加速,这与塞莱拉公司的出现不无关系。 曾经在国家卫生研究院做过研究的文特尔领导的塞莱拉公司在1998年宣布,将在两年内测定人类基因数据,并将数据出售给研究机构和制药公司。 塞莱拉使用文特尔发明的高速测序机大大提高了研究进度,这给人类基因组计划造成了很大的压力。 在塞莱拉公司实验室中,先进的基因测序机一天24小时运转比人类基因组计划早两个月完成草图的绘制。 柯林斯的国家人类基因组研究所不甘示弱,在2000年6月拿出了比文特尔的图谱稍微准确的版本。 虽然人类基因组计划已经正式结束,但测序并没有百分百地完成。 科学家说,由于一些高深莫测的原因,人类基因组中有1%被证实是无法测序的,只有在相关新技术出现之后,这一难题才有望得到攻克。 也许,这1%中,还蕴藏着生命的其它奥秘。 这些奥秘不是那么容易被揭开,像一位学者所说:“一提到自然,我们就会想到太阳、月亮和地球等眼睛能够看到的东西。 而绘制人体设计图的则是不为我们眼睛所见的大自然的伟大威力。 ”在网上找了点资料,I hope that it could help you a litle!!!

[仓库升降货梯多少钱 西安货梯厂家 高层升降货梯 仓库升降货
王忠民 预估可能在5年后会实现 统一体制内外退休金