什么是导热系数

深入理解热传递的三大方式:传导、对流与辐射

在热能转换的领域,三种主要的热传递机制——传导、对流和辐射——各有其独特的公式和原理。

让我们逐一解析这些关键公式,以便更好地掌握它们在工程和自然界的实际应用。

热传导公式

热传导过程中,热量以Q的形式传递,单位为瓦特(w)。其公式表达为:

Q = △T × λ × S / L

其中,R = L / (λ × S) 是热阻,衡量材料阻止热量传递的能力,单位为开尔文/瓦特(k/w)。

热阻的计算可以帮助我们理解材料的导热性能。

傅里叶定律的视角

进一步深入,我们有傅里叶定律,它描述了单位面积上的热流密度q,其公式为:

q = λ × △T / L = Q / S

这里,q代表单位面积上的热流密度,λ依然是导热系数,而温差△T和厚度L的结合,为我们揭示了热量传递的速率。

对流换热的牛顿冷却公式

对流换热则由牛顿冷却定律描述,单位面积热流密度q与温差和对流换热系数h密切相关:

q = h × △T = Q / S

h是关键的对流换热系数,它反映了流体在流过表面时的热量交换效率。

辐射换热的净速率公式

最后,辐射换热涉及发射率ε、斯提芬-玻尔兹曼常数δ和两个辐射表面的温度,公式为:

q = ε × δ(T₁^4 - T₂^4) = Q / S

这里,辐射表面的温度T₁和T₂的四次方差异,体现了辐射能量的分布和交换。

热惰性指标

为了衡量系统在温度变化下的响应速度,我们引入了热惰性指标D,它结合了热阻R和材料的蓄热系数S:

这个指标可以揭示系统在温度变化中的稳定性和响应时间。

理解并掌握这些公式,将有助于我们更好地理解和控制热能的流动,无论是设计高效建筑、优化工业过程还是探索自然界的热力学奥秘。

热的良导体测量导热系数的常用方法有稳态法和瞬态法。

导热系数是指单位时间内在单位温度梯度下沿热流方向通过材料单位面积传递的热量,热传导是热量传输的重要方式之一,也是热交换现象三种基本形式,传导,对流,辐射中的一种。

热的良导体测量导热系数的稳态法

稳态法是经典的保温材料的导热系数测定方法,至今仍受到广泛应用,其原理是利用稳定传热过程中,传热速率等于散热速率的平衡状态,根据傅里叶一维稳态热传导模型,由通过试样的热流密度,两侧温差和厚度,计算得到导热系数。

瞬态法是最近几十年内开发的导热系数测量方法,用于研究中,高导热系数材料,或在高温度条件下进行测量,瞬态法的特点是精确性高,测量范围宽,高能达到2000摄氏度,样品制备简单。

热线法是在样品,通常为大的块状样品中插入一根热线,测试时,在热线上施加一个恒定的加热功率,使其温度上升,测量热线本身或与热线相隔一定距离的平板的温度随时间上升的关系。

如何测量物质的导热系数?

先说基本原理:(1) 稳态法热导率测量原理是在被测试样所关心的热导率方向上形成一个稳定的温度差,然后测量这两个温度点之间的距离、温度差和热流密度,最终计算出这此平均温度(两个温度值取平均)下的等效热导率。

稳态法主要包括保护热板法和热流计法。

(2) 动态热导率测量原理是在被测试样整体达到温度均匀和恒定后,在试样加载一个微小的温度扰动,通过检测此温度扰动波形,可以直接计算出被测试样在此恒定温度下的热导率。

动态法主要包括热线法、热带法、热盘法和激光脉冲法也算动态法。

由此可见,原理上的不同点是:稳态法时试样内有稳定的一维热流场,所以稳态法测量的热导率具有明显的方向性,热导率方向与热流方向相同。

而动态法则是则没有方向性,测量的是整个试样整体的平均热导率,所以动态法适合测量均质材料。

当然,激光脉冲法是个特例,只能测量方向向性热扩散率,然后根据密度和比热容算出测试方向上的热导率。

测试方法:(1)稳态法测试方法核心就是要实现稳态法测试原理模型的各种边界条件。

尽管稳态法热导率测量计算公式简单,但边界条件的实现要达到很高的要求,比如绝热边界条件的实现等,所以稳态法测试设备比较庞大,不太适合小尺寸试样测试。

(2)动态法则相反,测试模型对边界条件没有太多的要求,只要试样尺寸足够大,试样测试前的温度恒定就可以,所以动态法热导率测试设备一般都相对比较简单。

但动态法的测试数据方法一般都比较复杂,甚至要进行复杂的数学公式进行各种修正。

导热系数高低对导热性能影响
导热系数有什么作用 什么是导热系数