国产大模型独角兽 困在光环里

智东西 ZeR0 漠影

11月16日,月之暗面举办了一场临时组织的媒体沟通会,说是特意选在Kimi开放一周年纪念日。

结果意料之外,啪,发了款数学模型。

还跟OpenAI o1系列、GPT-4o、Anthropic Claude 3.5 Sonnet模型的测试分数做了对比。

这个举动搁在友商身上很正常,但由月之暗面来做就有些稀奇了。因为这家大模型公司的作风一贯有些另类,不聊技术,只推拳头产品Kimi。

Kimi在今年年初的热度冲到一个高峰。铺天盖地的广告投放轰炸使这款智能助手产品声名鹊起。

快速攀升的Kimi用户数和影响力、“90后清华校友技术天才创业者”的创始人标签、阿里超10亿美元领投、Kimi概念股爆火……诸多光环叠加,将月之暗面捧成了一个新晋国产大模型“顶流”。

但很快其命运陡转,口碑逐渐下滑,质疑声扑面而至,这些光环也变成了缚住月之暗面的茧。

以前是好评如潮,但不知何时开始,月之暗面被冠以“大模型营销咖”的外号,模型乏善可陈,生态资源被大厂碾压,产品更新多为缝缝补补。

一些针对产品效果的负面评价也声量渐起:“动不动让换个话题”、“有时会瞎编”、“整理资料糙”、“听不懂需求”、“幻觉和错误严重”、“指出它错了还犟嘴”……这些大模型通病,在用户心里埋下失望的种子。多位用户吐槽说,Kimi最近莫名地越用越差,感觉比以前变蠢了,甚至有人怀疑这是不是想逼用户付费。

这是大模型竞赛中的一个缩影:当发展速度跟不上讲故事的高度,当免费和低价策略挟住每一个参赛者,当Scaling Law信仰开始动摇,此时的转折,是新高潮前的过渡,还是凛冽寒冬的序曲?

大模型独角兽们,集体走到逆风时刻。

一、月之暗面的B面:特长被复刻、出海失利、被前资方“逼宫”

2023年10月,月之暗面发布支持输入20万汉字的智能助手产品Kimi。

彼时,这是全球市场上商用大模型服务中所能支持的最长上下文输入长度。在高曝光度加持下,Kimi凭借“最强长文本”特色,很快在AI聊天产品大战中杀出重围,收获增长和口碑。

凶猛的推广投放为Kimi争取到先发优势。今年年初阿里的大笔投资进一步增加了月之暗面的曝光度。在4月Kimi智能助手支持200万字上下文后,二级市场一度掀起Kimi概念股热潮。

红得发紫,是A面的月之暗面。

但在另一侧B面,这家明星国产大模型独角兽,已经频频陷入麻烦中。

难守的“特长”

Kimi爆火后,很快“长文本”成为大模型突破的共识方向。

竞争对手们纷纷高调跟上,3月22日,阿里通义千问开放1000万字长文本能力,360智脑宣布内测500万字长文本能力,百度宣布文心一言4月升级逾200万字的长文本能力。

之后,Kimi仍努力拉大优势,今年10月上线具备AI自主搜索能力的Kimi探索版,搜索量是普通版的10倍,一次搜索可以精读500个页面。

但Kimi的身份,已经从引领潮流者转向追随者,上周新推出的对标o1的数学推理模型,便是在走OpenAI打过样的路。

激进投放

Kimi在投流上的生猛,连大厂掌门人都侧目。

在百度2024年第三季度总监会上,百度创始人李彦宏谈道:“AGI是个长期探索的事情,文小言的推广没必要像豆包、Kimi那样激进。”

自发布以来,Kimi在字节旗下穿山甲、B站、小红书等渠道进行了大规模投流。一张网传图表显示,Kimi的季度投放金额豪横到上亿元,吊打多数竞品。Kimi还长期推行免费策略,直到今年5月才首次试水商业化,启用打赏模式。

这带来的回报是领先的用户增长和产品影响力。但无论是月活、活跃用户留存率还是免费App下载排名,Kimi都被字节豆包压了一头。

出海止步

今年年初,月之暗面在海外推出情感陪伴类AI对话产品Ohai和AI生成视频工具Noisee。

据创投日报援引知情人士消息,其出海项目在今年6月就已撤掉。前Noisee产品负责人明超平、前Ohai产品负责人已于近期离职创业。

上周六,杨植麟回应说月之暗面今年二三月份开始聚焦和缩减,主动做减法,更加聚焦业务,先聚焦,后全球化,要更有耐心。他说过去一年给其团队上的一课是,几个业务一起做,会活生生把自己变成大厂,没有任何优势。

套现疑云

除了产品竞争压力外,月之暗面也陷入一系列舆情风波中。

今年4月,杨植麟被传通过售出个人持股套现数千万美金,随后月之暗面进行辟谣,但其中牵扯出的“资本贵人襄助论”长期余温未了。

前金沙江创投管理合伙人张予彤是循环智能最早的天使投资人,与杨植麟是清华校友,4月份离开金沙江创投。有报道称,月之暗面获阿里领投的A+轮融资,正是归功于张予彤的牵头促成。

仲裁风波

11月11日,据《暗涌Waves》报道,月之暗面创始人杨植麟、联合创始人兼CTO张宇韬被循环智能7家投资方中的5家(金沙江创投、靖亚资本、博裕资本、华山资本、万物资本)申请仲裁。

这场利益纠葛牵扯到三位清华同窗杨植麟、张宇韬、陈麒聪在2016年创办的循环智能。循环智能主要做企业营销客服AI软件,在2018~2021年完成5次公开融资,此后再无新融资披露。

极大的落差,被业界推测是循环智能老投资方们发起仲裁的导火索。

杨植麟此前曾在采访中透露:“我们2023年2月开始集中做第一轮融资,如果delay(延迟)到4月,基本没机会了。”之后其动作相当麻利,3月创办月之暗面,8月推出Kimi,今年暴风吸金,获得腾讯、阿里、小红书、三七互娱、美团、小红书等名企投资,估值扶摇直上超过30亿美元,远高于循环智能用8年时间发展到的估值。

该仲裁事件的后续及影响,仍有待观望。

二、国产大模型独角兽的“四重困”

今年,国产大模型江湖格局生变,创业头部梯队从“四小龙”变为“六小虎”,即 智谱AI 月之暗面 、、 百川智能 零一万物 阶跃星辰

智谱AI和MiniMax成立时间较早,另外四家则都是在2023年3~5月期间创办。

借势2021年大放水和生成式AI飞升的红利,过去两年,资本密集汇向这几家大模型初创公司,只用短短一两年就将它们拱到独角兽身价。

百川智能、智谱AI、月之暗面均跻身200亿元估值俱乐部。今年6月,阶跃星辰被传正在进行一轮估值20亿美元的新融资。

金沙江创投主管合伙人朱啸虎今年3月接受腾讯新闻《潜望》采访时的发言,道出了一些质疑者的心声:“这些公司,要场景没场景,要数据没数据,你说它有什么价值?而且一上来估值这么贵。”

资本的追捧,与其在商业市场上的实际表现,始终存在着隐性的不平衡。

以前“六小虎”各具特色:智谱AI是正统清华科研班底,最早探路大模型研发,在To G、To B布局上都摊得较广;MiniMax在多模态和出海产品上保持领先;月之暗面手握爆款产品Kimi,不怎么强调背后模型;百川智能由王小川领衔的前搜狗团队创办,一年发了十多款大模型,并在AI医疗方向发力;零一万物由李开复组局创办,热衷于打榜;阶跃星辰则由前微软全球副总裁姜大昕创办,快步形成“万亿参数MoE+多模态”矩阵。

但一些变化已经显现。

1、人才之困

AI大模型独角兽们陷入的争议,很容易让人联想到AI 1.0创业时代的“CV四小龙”,高人才密度、强技术实力未能转换成高回报的市场竞争力,迄今难逃亏损魔咒。在生成式AI巨浪兴起后,不少来自互联网大厂及商汤、旷视的技术、产品、工程人才转身遁入大模型公司。

大模型创企像个围城,外面的人想进来,里面的人又纷纷出走。这一年来,一大波骨干人才从“六小虎”出走,有的回流大厂,有的选择创业。

今年8月,前零一万物算法副总裁、模型预训练负责人黄文灏被曝已加入字节跳动;9月,MiniMax“星野”产品负责人张前川被曝改任产品顾问,不再参与MiniMax业务。零一万物联合创始人李先刚也被曝出已离职并重返老东家贝壳。

月之暗面则有多位前产品负责人在离职后选择创业。比如月之暗面前大模型产品负责人王冠在今年年初创立了AI视频方向的ONE2X,已完成天使轮融资;前Noisee产品负责人明超平正以5000万美元的估值为其新创业项目融资。

另据Z Potentials报道,零一万物联合创始人潘欣正式加入闪极,出任闪极科技合伙人。

人才有出,也有进。

今年8月,百川智能宣布中国人民大学高瓴人工智能学院、信息学院院长文继荣教授受聘担任百川智能“首席科学家”,月之暗面将微软亚洲研究院前首席研究经理谭旭招至麾下。

在团队扩张上,杨植麟称月之暗面在几个大模型创业公司中始终保持人数最少、卡和人的比例最高,认为团队扩得大对创新有致命伤害。

2、技术之困

上周大模型领域的一大热议话题是Scaling Law,这个大力出奇迹的暴力美学,碰壁了。

OpenAI、Anthropic、谷歌都被曝出新模型改进放缓,寻求转变路线。连已经离职创业的前OpenAI首席科学家Ilya Sutskever都跳出来一吐为快,说2010年代是Scaling的时代,但现在是时候重归奇迹和发现的时代了。

而模型提升见顶,意味着AI聊天产品的智力很难再出现质的飞跃。

不过多位业界大佬否认了“碰壁论”。OpenAI联合创始人兼CEO Sam Altman、微软AI主管Mustafa Suleyman、微软董事长兼CEO Satya Nadella、前谷歌CEO Eric Schmidt等都宣称Scaling Law依然有效、没有迹象显示放缓。

杨植麟对Scaling Law仍持乐观态度,认为用强化学习的方式,上限很高。他预测训练模型还有半代到一代的空间,这个空间可能会在明年释放出来,接下来重点会是强化学习,范式上会产生一些变化,通过不同方式去Scale。

在他看来,留存与技术成熟度呈正相关,把思考能力和交互做好后,留存会进一步上升。

3、产品之困

模型卷不动后,竞争焦点必然向产品转移。

To B方面,大模型独角兽同时面临同行的闭源模型和开源模型的竞争,低价策略仍是主旋律。

To C方面,市场尚未等来一个超级应用,AI产品同质化严重的情况一直存在,目标用户重叠度高,同类产品功能和体验互相借鉴模仿,产品转移成本低,又不像一些头部社交、电商平台用推荐机制拿捏住人性的弱点、形成上瘾机制,那么如何才能长久占领用户心智?

当前AI聊天类产品在便捷搜索和提高生产力方面有效发挥作用,但受众仍然有限。不断优化的产品功能和效果,仍未能消减很多用户对幻觉错误和沟通费劲等问题的埋怨。

大模型主要靠To B还是To C赚钱,不同观点都有拥趸者。摆在大模型创企们面前的,是涉及精简成本和聚焦核心业务的方向选择难题:如果盈亏主要依赖To C应用,那么投入高昂的训练成本是否值当?如果To B才是商业表现的征途,那么姗姗来迟的月之暗面是否已经输在起跑线?

对市场需求的精准把控很重要,但国内团队擅长“抄作业”。大厂可以轻轻松松推出爆款AI功能合集,而创企只能选准方向精兵作战。

现阶段,大厂靠传统优势依然胜出,语言类有字节豆包,视频生成类有快手可灵。

对于与豆包的竞争,杨植麟上周的回应是: 不希望过多关注竞争,因为竞争并不产生价值。做正确的事情,而不是专门去做不一样的事。只要能有人实现AGI,都是非常好的结果。

月之暗面目前还是聚焦于Kimi产品和品牌,聚焦在团队认为上限最高的事情上,更关注如何迭代更好的技术和产品、产生用户价值,更聚焦在提升模型的思考推理能力。

据晚点10月份报道,月之暗面的多模态研究从去年10月开始,在研发视频模型,为确保产品更具差异性,对外发布计划仍在推迟。

4、财力之困

除去人力成本不谈,大模型创企还面临三大烧钱问题:训练贵、推理贵、获客贵。

大模型训练和推理已经不是稀奇事。据外媒披露,预计OpenAI今年创收35~45亿美元,亏损40~50亿美元;Anthropic今年收入有望达到10亿美元,亏损可能是OpenAI的一半。

为了降低大模型推理成本,杨植麟称kimi未来考虑限制次数,让用户自己做选择。

为了保住拉新和留存,投放在所难免。早期Kimi投流效果立竿见影,知名度快速攀升,B站和小红书布满了安利。随后一些AI产品争相效仿,带动用户转化成本上涨。在机场、地铁等场所,旅客对大模型产品的大屏广告逐渐习以为常。

至少截至今年,大模型还不是一门能赚钱的好生意,也尚未展现出长期商业盈利的潜力。

结语

很少有新生行业能像生成式AI这样,短短两年孕育出多家百亿级估值的明星企业,它们被迅速推上神坛,也承受着过高期待带来的困扰。

近期,产业对大模型似乎逐渐祛魅。人们不再容易因雄心勃勃的AGI技术信仰而陷入狂热,不再对百模大战保持耐心和好奇心,不再盲从大佬预言,不再轻信投资者夸大的创新者投资资本回报,也不再热议谁会成为“中国版OpenAI”。

对于大模型创企而言,两年的成长,还不足以解决概念丰满但产品骨感的问题,消除业界一个长期的疑虑:大厂资源雄厚,进可攻退可守,仅靠大模型营生的公司又如何自证造血能力?当听众不再相信故事,又凭什么支撑起百亿级的估值?


自动驾驶祛魅:从降维打击到降维求生

在2020年的一场公开活动上,自动驾驶创业公司Momenta创始人曹旭东被主持人发问,为什么会和Waymo这样的头部公司采取不一样的战略,曹旭东认真解释一通之后,没想到招致文远知行创始人韩旭的“内涵”,双方就此展开了一轮唇枪舌剑。

对于Momenta同时兼顾L2和L4的双线作战打法,韩旭搬出了一句古话:搏二兔,不得一兔[1],强调有些东西需要聚焦,接着又来了一句:“我们看着山顶的金子就冲上去,路边的碎银子就不捡了,于是披荆斩棘,逢山开路,遇水架桥,一路上把自动驾驶出租车队建出来了。”

曹旭东听完之后心里有些不悦,回怼了一句:“在中国一二线城市运营百万辆robotaxi(无人驾驶出租车),这件事还挺有挑战”,并且强调Momenta聚焦的是核心,而不是花里胡哨的边界。

两年前,做L2和做L4级自动驾驶的公司就像两个平行世界,你我之间,泾渭分明,甚至互相之间有些瞧不上,但现在,这种边界正在被打破,不少L4公司开始“降维”进入L2领域。

其中就包括对碎银不屑一顾,认为2024-2025年Robotaxi就能满大街跑的文远知行。

今年5月,文远知行拿了博世的投资,双方将会共同开发L2-L3级自动驾驶,无独有偶,之前主要做L4级Robobus的轻舟智航也在同期推出了价格低至1万元的高阶自动驾驶解决方案,再往前追溯,华为和网络也将L4级的技术能力“降维”用到了一些车企身上。

短短两年时间,“降维”似乎成为了自动驾驶行业的关键词,这些变化似乎都在印证华为前自动驾驶负责人苏菁的一句话: “现阶段做Robotaxi的企业都得完蛋。”

自动驾驶从一开始就分了两条岔路,一条是技术从低到高的循序渐进式,代表是特斯拉,一条是直接实现终极目标的一步到位式,代表是Waymo。

自动驾驶分级以L3为分水岭,L3以下一般称ADAS

L3以上为高等级自动驾驶,Robotaxi属于L4-L5

2016年,谷歌无人驾驶团队独立为Waymo,正式拉开了这个行业的大幕,一批互联网大厂、学界背景的华人工程师也选择下海,随后两年,小马智行、文远知行(当时名为景驰)、Momenta、AutoX、等公司相继成立。 这些公司不约而同选择了Robotaxi这条最难、但也是最有商业潜力的赛道。

2018年,摩根士丹利对Waymo给出了1750亿美元的估值,比上一轮暴增1000亿美元,其中Robotaxi业务价值800亿美元,Robotruck价值900亿美元,软件授权业务价值70亿美元。

麦肯锡预测,仅在中国,Robotaxi在2030年的订单金额就将达到2600亿美元,会超过自动驾驶乘用车的销售金额[3]。

资本看到了一种可能性:自动驾驶会让司机“下岗”,这些手握降维打击技术的创业公司,将成长为未来的Uber、滴滴,甚至有可能将车企变成他们的代工厂,终结卖车的商业模式,这个故事听上去比电动车取代燃油车都要性感。

在这样的预期下,2018年国内迎来了自动驾驶的投资热潮,当年全行业融资162亿,小马智行、文远知行、Momenta、悉数完成上亿美金融资[4]。 Robotaxi成为了孕育独角兽的金窝。

然而,情况很快急转直下。

2018年末,Waymo前CEO John Krafcik在商业化试点进展缓慢时主动站出来戳泡泡,表示完全无人驾驶 汽车 很可能永远不会出现[5],也有一些L4和L5公司的工程师认为,自己做的事其实是在一个赛道上跑圈,以为解决了90%的问题,但是回头一看,还有90%没解决。

类似的表态无异于一盆冷水把资本浇了个透心凉。

在国内,受中美贸易战和资管新规影响,创业公司融资不再像之前一样唾手可得,自动驾驶行业融资额在2019年锐减三分之一,资本的脐带被剪掉之后,Robotaxi公司不得不尝试自我造血的新途径,包括进军无人驾驶卡车、无人小巴等赛道,甚至开始尝试造车。

理论上,小的细分场景比Robotaxi更容易实现商业化,但各自又有问题:无人小巴虽然路线固定,技术上更容易落地,但无奈市场规模太小;无人驾驶卡车规模够大,但面临的安全和法规政策问题同样严峻;造车是个好故事,但资金门槛是200亿。

一位行业人士曾如此评价, “但凡有清晰的商业化路径,也不至于各条赛道乱窜”。

如果人类实现自动驾驶的过程是登山,那么Robotaxi显然是珠穆朗玛峰,而问题在于,没人能确切地说出,Robotaxi离峰顶还有多远。

在成立5、6年都没法实现造血之后,所有的Robotaxi公司都会被质疑: 只融资不量产,你是在创业,还是在科(pian)研(qian)?

Robotaxi公司面临的问题在于,顶级硬件、先进算法和海量数据,三者缺一不可,有些公司只能满足一个指标,比如Uber和滴滴,它们拥有大量的行驶数据,但维度比较单一,精度也不够。

有些公司可以满足两个指标,比如Waymo,拥有最顶级的硬件配置和算法,但搜集到的数据比较有限,截至到2021年年底,Waymo的累计行驶里程为3200万公里。

兰德公司预计,自动驾驶技术需要测试100亿英里,才能证明在安全性上超过人类。 如果组建一百辆的车队,即使24小时不间断测试,也要跑差不多200年。

即便是三个条件都能同满足,也不意味万事俱备,要实现高级别自动驾驶的商业化, 不仅要依靠数据闭环,同时也要重视工程化能力,所谓的工程化能力是指硬件既要满足车规要求,比如安全性和可靠性, 同时也要满足低功耗、低成本的需要。

对于早年的Robotaxi公司来说,想要在技术先进、成本低廉以及开发迅速三个维度上取得完美平衡是几乎不可能的。

为了获得更多维度的数据、保证行驶过程中的绝对安全并且降低人工干预的频率,Robotaxi必须使用高性能硬件,包括大算力芯片、激光雷达、带有冗余的执行机构等等,在产业链不成熟的情况下,它们严重推高了自动驾驶系统的成本。

两年前,一辆全副武装的Robotaxi成本通常超过100万元。 在2021年,网络推出了48万元的Robotaxi系统量产套件,同行Auto X立马怒斥,这样的车“绝对不敢坐[5]。 ”

但更关键的问题是,政府让不让乘客坐。

如今,虽然北京、深圳、长沙等地都在名义上允许Robotaxi的商业化运行,但都是在政府划定的示范区内试运营,需通过测试拿到牌照,车队规模受限。

2021年,Auto X为了在Robotaxi商业运营上先声夺人,未经深圳交管局允许私自派出车队上路接客,被当地紧急叫停[6]。

元戎启行CEO周光认为,要实现完全无人驾驶,面临着经典的鸡生蛋、蛋生鸡问题——如果想让政策放开,政府必然要掌握充分的数据报告进行评判;但如果政策不先放开,那企业在有限场地下测试到破产,也难以积累足够的数据去说服政府。

同时,Robotaxi无法商业化则难以累积现金流,无法进一步扩大运营规模实现正向循环,即便是像Waymo这样的超级富二代也难以为继。 2021年,Waymo估值一度萎缩到300亿美元,John Krafcik也黯然下课。

当自动驾驶的跨越派困在商业化的泥淖里时,渐进派的道路却越走越顺。

过去十年,特斯拉在全球卖出了超过300万辆车,其中绝大多数搭载了辅助驾驶系统Autopilot。 通过影子模式,特斯拉收集了数十亿英里的路况和驾驶数据。

2021年,基于这些数据,特斯拉全面重构了其辅助驾驶系统的软件算法,使其在技术框架上更加面向自动驾驶,并借此推送了新的自动驾驶功能FSD beta,朝着无人驾驶更进一步。

尽管马斯克的无人驾驶承诺总是跳票,但它的确摸索出了一条拾阶而上的实现路径,很多车企也意识到他们目前最需要的并不是取代司机的L4,而是帮人开车的L2和L3,这让总想着弯道超车的自动驾驶公司不得不审视自己的战略选择,重新加入渐进式路线。

去年下半年以来,原本从事高等级自动驾驶的元戎启行和轻舟智航相继推出了低成本自动驾驶系统量产套件,两套方案的共同特点是,将Robotaxi的技术方案“降维”到乘用车的辅助驾驶系统上,面向主机厂销售,实现高阶智驾(行业亦称L2+)能力。

车企愈演愈烈的智能驾驶竞赛驱动的硬件和软件体系变化,为他们提供了契机。

在2020年之前,由于L4和L2使用的传感器不同,比如前者会用昂贵的激光雷达,后者根本用不起,有的大众车型甚至只配一个毫米波雷达和一个摄像头,这种硬件架构上的不同导致L4的算法和L2存在非常大差异,如果彼时让做L4的公司去为车企提供L2的解决方案,意味着算法需要重写,工作量非常大。

但2020年之后,硬件价格的下降拉近了 L2和L4之间的距离。

一方面,激光雷达的性能和稳定性在不断提高,但价格从上万美元降至上千美元,在2020年的CES上,博世、华为、大疆、Velodyne以及国内许多创业公司都推出了它们的产品,有的价格低至100美元,大大加快了激光雷达前装上车的速度。

实际情况也如此,2021年之后,一大帮国产新势力都推出了带激光雷达的车型,包括售价不到20万的小鹏P5。 另外,华为和极狐的深度合作说明,计算平台+L4级传感器的价格已经可以降至20万元以内[7]。

另一方面,高算力SoC芯片的出现也发挥了重要作用,尤其是英伟达的Orin。

元戎启行CEO周光说,Robotaxi的算法模型非常复杂,测试车上常常使用工控机加高算力显卡的方式运行,但这无法用于量产车。 而Orin芯片在高算力与功耗之中取得了平衡,能够驱动复杂算法模型,并且高度集成化,可布置在车内。

而在软件算法层面,传统的L2辅助驾驶通常由不同供应商提供的多套算法堆叠而成,能力上限较低。 为了实现高阶智驾,车企纷纷引入更先进的算法框架,这是L4公司擅长的领域。

不过,原生的Robotaxi算法需要的算力可能高达数百乃至上千T,而量产车考虑到成本、空间、安全冗余等问题,计算资源仍相对有限。 对此,一部分L4公司选择精简或压缩算法模型,另一些公司选择自研“推理引擎”,目的都是提升算法运行效率,降低算力需求,能在量产车中跑起来。

正是因为硬件体系的成熟以及软件算法的提升,使得L4和L2之间的技术迁移变得可能,适配效率也更高,但即便如此,L4“降维”L2仍然会在现实上遇到很多问题。

拿到比亚迪、东风等车企订单的国内ADAS创业公司MINIEYE,其副总裁郑伟称,车企与自动驾驶系统供应商合作,最看重的是“没有短板”,需要对方有一定的量产经验。

而Robotaxi公司的特点是算法厉害,但量产经验不足、成本控制能力不强、产品可靠性有待验证,车企要建立对其信任,需要一个较长的周期,这也是为何文远知行会牵手传统Tier 1博世,甘愿成为绿叶的的原因。

另一方面, “互联网、AI背景出身的人才与主机厂的风格其实是格格不入的,他们能不能沉下来做脏活累活?” 一家ADAS创业公司的内部人士对此发出疑问。

参考资料

[1] 自动驾驶大迁徙:从L4到L2的降维之战,甲子光年

[2] 李开复:买车是一生最坏投资 96%时间停在车库折旧,快 科技

[3] 出行市场的下一个五年:驱动力、制胜因素、运营模式及未来竞争格局,普华永道思略特

[4] 年终盘点丨2019年的自动驾驶:泡沫破裂之后,进入“静默期”,亿欧网

[5] AutoX肖健雄:48万无人出租车不敢坐,最安全车企活到最后,AI 财经 社

[6] 独家丨深圳交管局:并未允许AutoX无人化上路,每日 汽车 电讯

[7] Robotaxi公司做L2前装量产,机遇与挑战并存,九章智驾

视觉设计:疏睿

研究支持:王磊

高达UC里不考虑主角光环的话,独角兽和报丧女妖到底哪架机体性能更强啊?

从设计上来说,女妖要稍强于独角兽(仅普通模式跟NT-D模式,不算小说版本的全装甲)女妖做的测试比较多,特别是重力下的,在大气中的表现应该比较好(独角兽多是宇宙环境下的测试,宇宙战可能稍有优势)其他武装方面没有大的差异,就在于有没有拉普拉斯程式一说是因为这个区别,独角可以通过感应自己的驾驶员或者敌人是NT从而发动NT-D,而女妖只能通过感应敌人是NT才能发动NT-D但是小说中对进攻基地的卡克斯的时候女妖也开了NT-D,对方应该不是NT。当然巴纳吉的主角光环是可以逆天的

什么是独角兽企业?

独角兽企业是指投资界对于10亿美元以上估值,并且创办时间相对较短的公司的称谓,以神话动物来代表成功企业。

独角兽企业

独角兽企业是投资行业尤其是风险投资业的术语,一般指成立时间不超过10年、估值超过10亿美元的未上市创业公司,于2013年由风险投资家Aileen Lee提出。

独角兽企业被视为新经济发展的一个重要风向标,主要在高科技领域,互联网领域尤为活跃。

独角兽企业代表着新经济的活力,行业的大趋势,国家的竞争力。 受疫情影响,全球资本市场风起云涌,独角兽势力大洗牌。 有些独角兽融资困难,光环不再;有些独角兽却获得资本追捧,大放异彩;有些甚至大有超越老牌互联网企业之势。

独角兽向来也是产业园区都希望吸引的对象,因为一个独角兽企业可能会影响的是整个区域产业的发展,形成产业链。

上交所携手国盛证券举办投资者服务周广东行系列活动之投教大讲堂
暂无